Consistent hydration of intervertebral discs during in vitro testing.

[1]  A. Nachemson The Load on Lumbar Disks in Different Positions of the Body , 1966, Clinical orthopaedics and related research.

[2]  M. L. Burns Analysis of load-deflection behavior of intervertebral discs under axial compression using exact parametric solutions of Kelvin-solid models. , 1980, Journal of biomechanics.

[3]  P. Brinckmann,et al.  Deformation of the Vertebral End-plate Under Axial Loading of the Spine , 1983, Spine.

[4]  Stefan Silbernagl,et al.  Taschenatlas der Physiologie , 1991 .

[5]  M. Adams,et al.  A technique for quantifying the bending moment acting on the lumbar spine in vivo. , 1991, Journal of biomechanics.

[6]  M. Adams,et al.  Mechanical testing of the spine. An appraisal of methodology, results, and conclusions. , 1995, Spine.

[7]  G. Bergmann,et al.  In vitro load measurement using an instrumented spinal fixation device. , 1996, Medical engineering & physics.

[8]  D W Hukins,et al.  Analysis of load-relaxation in compressed segments of lumbar spine. , 1996, Medical engineering & physics.

[9]  V C Mow,et al.  Tensile Properties of Nondegenerate Human Lumbar Anulus Fibrosus , 1996, Spine.

[10]  L. Haugh,et al.  Effect of Test Environment on Intervertebral Disc Hydration , 1997, Spine.

[11]  J. Lotz,et al.  Frozen Storage Affects the Compressive Creep Behavior of the Porcine Intervertebral Disc , 1997, Spine.

[12]  L. Claes,et al.  Are Sheep Spines a Valid Biomechanical Model for Human Spines? , 1997, Spine.

[13]  W C Hutton,et al.  The effect of fluid loss on the viscoelastic behavior of the lumbar intervertebral disc in compression. , 1998, Journal of biomechanical engineering.

[14]  Max Aebi,et al.  Lumbar intradiscal pressure measured in the anterior and posterolateral annular regions during asymmetrical loading. , 1998, Clinical biomechanics.

[15]  V. Haughton,et al.  The Stiffness of Lumbar Spinal Motion Segments With a High‐Intensity Zone in the Anulus Fibrosus , 1998, Spine.

[16]  A. Vasavada,et al.  Graded thoracolumbar spinal injuries: development of multidirectional instability , 1998, European Spine Journal.

[17]  L. Claes,et al.  Importance of the Intersegmental Trunk Muscles for the Stability of the Lumbar Spine: A Biomechanical Study In Vitro , 1998, Spine.

[18]  L. Claes,et al.  Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants , 1998, European Spine Journal.

[19]  L. Claes,et al.  New in vivo measurements of pressures in the intervertebral disc in daily life. , 1999, Spine.

[20]  T R Oxland,et al.  In vitro axial preload application during spine flexibility testing: towards reduced apparatus-related artefacts. , 2000, Journal of biomechanics.

[21]  J. Lotz,et al.  Effect of Frozen Storage on the Creep Behavior of Human Intervertebral Discs , 2001, Spine.

[22]  L. Claes,et al.  Intradiscal pressure together with anthropometric data--a data set for the validation of models. , 2001, Clinical biomechanics.

[23]  Keita Ito,et al.  Direction‐dependent resistance to flow in the endplate of the intervertebral disc: an ex vivo study , 2001, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[24]  J. Costi,et al.  The effect of hydration on the stiffness of intervertebral discs in an ovine model. , 2002, Clinical biomechanics.

[25]  Keita Ito,et al.  Fluid flow and convective transport of solutes within the intervertebral disc. , 2004, Journal of biomechanics.

[26]  F. Lavaste,et al.  Effects of freezing on the biomechanics of the intervertebral disc , 1998, Surgical and Radiologic Anatomy.