An investigation of inversion methodologies to retrieve the leaf area index of corn from C-band SAR data

Abstract Studies on the sensitivity of microwave scattering to vegetation canopies have led the researchers to conclude that crop biophysical parameters can be modeled from Synthetic Aperture Radar (SAR) backscatter. In this study, we assess different methods of modeling the Leaf Area Index (LAI), an important biophysical indicator of crop productivity, from dual-polarized SAR. Particularly, we evaluate the performance of the Water Cloud Model (WCM) to estimate the LAI of corn using VV and VH backscatter derived from RADARSAT-2 and Sentinel-1 satellites over two test sites (Canada and Poland). We tested the performance of four different approaches to invert the WCM. These are: (a) iterative optimization (IO), (b) Look-up table (LUT) search, (c) Support Vector Regression (SVR) and (d) Random Forest Regression (RFR). The accuracy of each inversion was measured by comparing the estimates from the WCM to the LAI of corn measured in-situ. Our results indicated that the inversion of the WCM using the SVR method delivered the best performance, yielding a correlation (r-value) between estimated and measured LAI of 0.92 and a root mean square error (RMSE) of 0.677 m2 m−2. The other approaches produced higher errors, with the LUT search resulting in the greatest error (RMSE of 0.977 m2 m−2). This study will be of interest to the agricultural sector as this community works towards developing robust methods for tracking crop productivity from SAR technologies across multiple sites and using data from multiple satellite platforms.

[1]  F. Baup,et al.  Estimation of leaf area index and crop height of sunflowers using multi-temporal optical and SAR satellite data , 2016 .

[2]  R. J. Brown,et al.  Providing crop information using RADARSAT-1 and satellite optical imagery , 2002 .

[3]  Niko E. C. Verhoest,et al.  On the Retrieval of Soil Moisture in Wheat Fields From L-Band SAR Based on Water Cloud Modeling, the IEM, and Effective Roughness Parameters , 2011, IEEE Geoscience and Remote Sensing Letters.

[4]  Amine Merzouki,et al.  Estimation of Leaf Area Index (LAI) in corn and soybeans using multi-polarization C- and L-band radar data , 2015 .

[5]  Mark R. Segal,et al.  Machine Learning Benchmarks and Random Forest Regression , 2004 .

[6]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[7]  A. Gitelson,et al.  Relationships between gross primary production, green LAI, and canopy chlorophyll content in maize: Implications for remote sensing of primary production , 2014 .

[8]  S. Liang,et al.  Retrieving leaf area index using a genetic algorithm with a canopy radiative transfer model , 2003 .

[9]  Fernando Vicente-Guijalba,et al.  A Complete Procedure for Crop Phenology Estimation With PolSAR Data Based on the Complex Wishart Classifier , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Luis Alonso,et al.  Optimizing LUT-Based RTM Inversion for Semiautomatic Mapping of Crop Biophysical Parameters from Sentinel-2 and -3 Data: Role of Cost Functions , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Xi Chen,et al.  Leaf Area Index Inversion of Winter Wheat Using Modified Water-Cloud Model , 2016, IEEE Geoscience and Remote Sensing Letters.

[12]  Thuy Le Toan,et al.  Multitemporal C-band radar measurements on wheat fields , 2003, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[14]  Avik Bhattacharya,et al.  Joint estimation of Plant Area Index (PAI) and wet biomass in wheat and soybean from C-band polarimetric SAR data , 2019, Int. J. Appl. Earth Obs. Geoinformation.

[15]  Katarzyna Dabrowska-Zielinska,et al.  Crop Yield Modelling Applying Leaf Area Index Estimated from Sentinel-2 and Proba-V Data at JECAM site in Poland , 2018, IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium.

[16]  Thuy Le Toan,et al.  Rice crop mapping and monitoring using ERS-1 data based on experiment and modeling results , 1997, IEEE Trans. Geosci. Remote. Sens..

[17]  José F. Moreno,et al.  Multiple Cost Functions and Regularization Options for Improved Retrieval of Leaf Chlorophyll Content and LAI through Inversion of the PROSAIL Model , 2013, Remote. Sens..

[18]  Seiho Uratsuka,et al.  Season-long daily measurements of multifrequency (Ka, Ku, X, C, and L) and full-polarization backscatter signatures over paddy rice field and their relationship with biological variables , 2002 .

[19]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[20]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[21]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[22]  Frédéric Baret,et al.  Review of methods for in situ leaf area index determination Part I. Theories, sensors and hemispherical photography , 2004 .

[23]  F. Baret,et al.  Review of methods for in situ leaf area index (LAI) determination: Part II. Estimation of LAI, errors and sampling , 2004 .

[24]  Peter C Austin,et al.  Bootstrap Methods for Developing Predictive Models , 2004 .

[25]  Koreen Millard,et al.  On the Importance of Training Data Sample Selection in Random Forest Image Classification: A Case Study in Peatland Ecosystem Mapping , 2015, Remote. Sens..

[26]  Avik Bhattacharya,et al.  Crop Biophysical Parameters Estimation with a Multi-Target Inversion Scheme using the Sentinel-1 SAR Data , 2018, IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium.

[27]  Benjamin M. Bolker,et al.  Ecological Models and Data in R , 2008 .

[28]  S. Running,et al.  Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data , 2002 .

[29]  Heather McNairn,et al.  Using multi-polarization C- and L-band synthetic aperture radar to estimate biomass and soil moisture of wheat fields , 2017, Int. J. Appl. Earth Obs. Geoinformation.

[30]  Kalifa Goita,et al.  The Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12): Prelaunch Calibration and Validation of the SMAP Soil Moisture Algorithms , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[31]  José F. Moreno,et al.  Toward a Semiautomatic Machine Learning Retrieval of Biophysical Parameters , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[32]  Valero Laparra,et al.  A Review of Kernel Methods in Remote Sensing Data Analysis , 2011 .

[33]  Ashutosh Kumar Singh,et al.  Comprehensive evaluation of soil moisture retrieval models under different crop cover types using C-band synthetic aperture radar data , 2019 .

[34]  B. Brisco,et al.  The application of C-band polarimetric SAR for agriculture: a review , 2004 .

[35]  Fawwaz T. Ulaby,et al.  Relating the microwave backscattering coefficient to leaf area index , 1984 .

[36]  José Luis Rojo-Álvarez,et al.  Robust support vector regression for biophysical variable estimation from remotely sensed images , 2006, IEEE Geoscience and Remote Sensing Letters.

[37]  Heather McNairn,et al.  ESTABLISHING CROP PRODUCTIVITY USING RADARSAT-2 , 2012 .

[38]  W. Cohen,et al.  Evaluation of MODIS NPP and GPP products across multiple biomes. , 2006 .

[39]  F. Baret,et al.  Neural network estimation of LAI, fAPAR, fCover and LAI×Cab, from top of canopy MERIS reflectance data : Principles and validation , 2006 .

[40]  Luis Alonso,et al.  Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3 , 2012 .

[41]  Sébastien Lambot,et al.  Estimating surface-soil moisture for retrieving maize leaf-area index from SAR data , 2011 .

[42]  F. M. Danson,et al.  Extraction of vegetation biophysical parameters by inversion of the PROSPECT + SAIL models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors , 1995 .

[43]  Amine Merzouki,et al.  Monitoring Soil Moisture to Support Risk Reduction for the Agriculture Sector Using RADARSAT-2 , 2012, IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens..

[44]  S. Durbha,et al.  Support vector machines regression for retrieval of leaf area index from multiangle imaging spectroradiometer , 2007 .

[45]  Patrick Bogaert,et al.  Maize Leaf Area Index Retrieval from Synthetic Quad Pol SAR Time Series Using the Water Cloud Model , 2015, Remote. Sens..

[46]  Heather McNairn,et al.  RADARSAT-2 Polarimetric SAR Response to Crop Biomass for Agricultural Production Monitoring , 2014, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[47]  Heather McNairn,et al.  Radar Remote Sensing of Agricultural Canopies: A Review , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[48]  Jan G. P. W. Clevers,et al.  Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties - A review , 2015 .

[49]  Heather McNairn,et al.  The sensitivity of RADARSAT-2 polarimetric SAR data to corn and soybean leaf area index , 2011 .

[50]  Jungho Im,et al.  ISPRS Journal of Photogrammetry and Remote Sensing , 2022 .

[51]  F. Ulaby,et al.  Vegetation modeled as a water cloud , 1978 .

[52]  Joaquim R. R. A. Martins,et al.  pyOpt: a Python-based object-oriented framework for nonlinear constrained optimization , 2011, Structural and Multidisciplinary Optimization.

[53]  Heather McNairn,et al.  Assessing SMAP Soil Moisture Scaling and Retrieval in the Carman (Canada) Study Site , 2018 .

[54]  Zhigang Liu,et al.  Performance Evaluation of Machine Learning Methods for Leaf Area Index Retrieval from Time-Series MODIS Reflectance Data , 2017, Sensors.

[55]  Y. Inoue,et al.  Inferring the effect of plant and soil variables on C- and L-band SAR backscatter over agricultural fields, based on model analysis , 2007 .

[56]  Roger D. De Roo,et al.  A semi-empirical backscattering model at L-band and C-band for a soybean canopy with soil moisture inversion , 2001, IEEE Trans. Geosci. Remote. Sens..

[57]  Juan M. Lopez-Sanchez,et al.  Rice Phenology Monitoring by Means of SAR Polarimetry at X-Band , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[58]  Jorge J. Moré,et al.  The Levenberg-Marquardt algo-rithm: Implementation and theory , 1977 .

[59]  G. Asrar,et al.  Estimating Absorbed Photosynthetic Radiation and Leaf Area Index from Spectral Reflectance in Wheat1 , 1984 .

[60]  Jean-Pierre Wigneron,et al.  A simple approach to monitor crop biomass from C-band radar data , 1999 .

[61]  O. Hagolle,et al.  LAI, fAPAR and fCover CYCLOPES global products derived from VEGETATION: Part 1: Principles of the algorithm , 2007 .

[62]  G. Guyot,et al.  Estimating surface soil moisture and leaf area index of a wheat canopy using a dual-frequency (C and X bands) scatterometer , 1993 .

[63]  Avik Bhattacharya,et al.  A Novel Phenology Based Feature Subset Selection Technique Using Random Forest for Multitemporal PolSAR Crop Classification , 2018, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[64]  Fawwaz T. Ulaby,et al.  Radar response to vegetation II: 8-18 GHz band , 1975 .

[65]  Imen Gherboudj,et al.  Soil moisture retrieval over agricultural fields from multi-polarized and multi-angular RADARSAT-2 SAR data , 2011 .

[66]  B. Bouman,et al.  Crop parameter estimation from ground-based x-band (3-cm wave) radar backscattering data , 1991 .

[67]  James A. Bunce Growth rate, photosynthesis and respiration in relation to leaf area index , 1989 .

[68]  R. Harris,et al.  Extracting biophysical parameters from remotely sensed radar data: a review of the water cloud model , 2003 .

[69]  Soon-Koo Kweon,et al.  A Modified Water-Cloud Model With Leaf Angle Parameters for Microwave Backscattering From Agricultural Fields , 2015, IEEE Transactions on Geoscience and Remote Sensing.