AIO3∙H6TeO6 (A=NH4, Rb): Two Telluric Acid and Iodate Co-Crystalline Compounds with Second Harmonic Generation Response

[1]  Xinglong Chen,et al.  Metal oxyhalides: an emerging family of nonlinear optical materials , 2022, Chemical science.

[2]  Ji-yang Wang,et al.  Synthesis, Structure, Characterization, and Calculation of a Noncentrosymmetric Fluorine-Containing Indium Iodate, Ba[InF3(IO3)2] , 2021, Crystal Growth & Design.

[3]  Huaiguo Xue,et al.  Recent Achievements in Lone-Pair Cation-Based Infrared Second-Order Nonlinear Optical Materials , 2021, Crystal Growth & Design.

[4]  Jing Chen,et al.  Revisiting the Fresnel-phase-matched nonlinear frequency conversion , 2020 .

[5]  Tinghao Tong,et al.  New Alkaline-Earth Metal Fluoroiodates Exhibiting Large Birefringence and Short Ultraviolet Cutoff Edge with Highly Polarizable (IO3F)2– Units , 2020 .

[6]  F. Liang,et al.  Rational Design of the Nonlinear Optical Response in a Tin Iodate Fluoride Sn(IO3)2F2 , 2020 .

[7]  X. Long,et al.  (NH4)Bi2(IO3)3F5 : An Unusual Ammonium-containing Metal Iodate Fluoride Showing Strong Second Harmonic Generation (SHG) Response and Thermochromic Behavior. , 2019, Angewandte Chemie.

[8]  Yan-Yan Li,et al.  Mixed-Anion Inorganic Compounds: A Favorable Candidate for Infrared Nonlinear Optical Materials , 2019, Crystal Growth & Design.

[9]  Huaiguo Xue,et al.  Balanced Second-Order Nonlinear Optical Properties of Adducts CHI3·(S8)3 and AsI3·(S8)3: A Systematic Survey. , 2019, Inorganic chemistry.

[10]  Fei-Fei Mao,et al.  A Facile Route to Nonlinear Optical Materials: Three-Site Aliovalent Substitution Involving One Cation and Two Anions. , 2019, Angewandte Chemie.

[11]  V. Toșa,et al.  Hybrid architectures made of nonlinear-active and metal nanostructures for plasmon-enhanced harmonic generation , 2019, Optical Materials.

[12]  Huaiguo Xue,et al.  SnI4 ⋅(S8 )2 : A Novel Adduct-Type Infrared Second-Order Nonlinear Optical Crystal. , 2018, Angewandte Chemie.

[13]  Huaiguo Xue,et al.  Adduct-Type IR Nonlinear-Optical Crystal SbI3·(S8)3 with a Large Second-Harmonic Generation and a High Laser-Induced Damage Threshold. , 2018, Inorganic chemistry.

[14]  K. Poeppelmeier,et al.  Assisting the Effective Design of Polar Iodates with Early Transition-Metal Oxide Fluoride Anions. , 2018, Journal of the American Chemical Society.

[15]  J. Qin,et al.  Influence of A-site cations on germanium iodates as mid-IR nonlinear optical materials: A2Ge(IO3)6 (A = Li, K, Rb and Cs) and BaGe(IO3)6·H2O , 2018 .

[16]  Guoyu Yang,et al.  Designing Two-Dimensional KBBF Family Second-Harmonic Generation Monolayers , 2018 .

[17]  Fei-Fei Mao,et al.  A Series of Mixed-Metal Germanium Iodates as Second-Order Nonlinear Optical Materials , 2018 .

[18]  Weiguo Zhang,et al.  Crystal Growth and Linear and Nonlinear Optical Properties of KIO3·Te(OH)6 , 2017 .

[19]  J. Qin,et al.  ABi2(IO3)2F5 (A= K, Rb and Cs): Combination of Halide and Oxide Anionic Units to Create Large SHG Response with Wide Bandgap , 2017 .

[20]  Bing-Ping Yang,et al.  Bi(IO3 )F2 : The First Metal Iodate Fluoride with a Very Strong Second Harmonic Generation Effect. , 2017, Angewandte Chemie.

[21]  Zheshuai Lin,et al.  Cooperation of Three Chromophores Generates the Water-Resistant Nitrate Nonlinear Optical Material Bi3 TeO6 OH(NO3 )2. , 2017, Angewandte Chemie.

[22]  Zheshuai Lin,et al.  "All-Three-in-One": A New Bismuth-Tellurium-Borate Bi3TeBO9 Exhibiting Strong Second Harmonic Generation Response. , 2016, Journal of the American Chemical Society.

[23]  J. Qin,et al.  RbIO3 and RbIO2F2: Two Promising Nonlinear Optical Materials in Mid-IR Region and Influence of Partially Replacing Oxygen with Fluorine for Improving Laser Damage Threshold , 2016 .

[24]  J. Mao,et al.  Recent advances on second-order NLO materials based on metal iodates , 2015 .

[25]  P. Halasyamani,et al.  Macroscopic polarity control with alkali metal cation size and coordination environment in a series of tin iodates , 2015 .

[26]  Zhong‐Zhen Luo,et al.  Bi2Te(IO3)O5Cl: a novel polar iodate oxychloride exhibiting a second-order nonlinear optical response. , 2015, Dalton transactions.

[27]  G. Sheldrick Crystal structure refinement with SHELXL , 2015, Acta crystallographica. Section C, Structural chemistry.

[28]  J. Mao,et al.  α-AgI3O8 and β-AgI3O8 with Large SHG Responses: Polymerization of IO3 Groups into the I3O8 Polyiodate Anion , 2014 .

[29]  E J Baerends,et al.  The Kohn-Sham gap, the fundamental gap and the optical gap: the physical meaning of occupied and virtual Kohn-Sham orbital energies. , 2013, Physical chemistry chemical physics : PCCP.

[30]  Zheshuai Lin,et al.  Bi2(IO4)(IO3)3: a new potential infrared nonlinear optical material containing [IO4](3-) anion. , 2011, Inorganic chemistry.

[31]  P. Halasyamani,et al.  BiO(IO3): a new polar iodate that exhibits an aurivillius-type (Bi2O2)2+ layer and a large SHG response. , 2011, Journal of the American Chemical Society.

[32]  Bing-Ping Yang,et al.  Explorations of new second-order nonlinear optical materials in the potassium vanadyl iodate system. , 2011, Journal of the American Chemical Society.

[33]  Michal Malinowski,et al.  Modern application of lasers , 2010 .

[34]  X. Long,et al.  BaNbO(IO3)5: a new polar material with a very large SHG response. , 2009, Journal of the American Chemical Society.

[35]  P. Halasyamani,et al.  Polar or nonpolar? A+ cation polarity control in A2Ti(IO3)6 (A = Li, Na, K, Rb, Cs, Tl). , 2009, Journal of the American Chemical Society.

[36]  Richard J. Gildea,et al.  OLEX2: a complete structure solution, refinement and analysis program , 2009 .

[37]  J. Mao,et al.  Ln3Pb3(IO3)13(mu3-O) (Ln = La-Nd): new types of second-order nonlinear optical materials containing two types of lone pair cations. , 2009, Inorganic chemistry.

[38]  P. Halasyamani,et al.  Alignment of lone pairs in a new polar material: synthesis, characterization, and functional properties of Li2Ti(IO3)6. , 2009, Journal of the American Chemical Society.

[39]  I. Gautier-Luneau,et al.  Promising material for infrared nonlinear optics: NaI(3)O(8) salt containing an octaoxotriiodate(V) anion formed from condensation of [IO(3)](-) ions. , 2007, Angewandte Chemie.

[40]  Matt Probert,et al.  First principles methods using CASTEP , 2005 .

[41]  P. Halasyamani,et al.  The lone-pair cation I(5+) in a hexagonal tungsten oxide-like framework: synthesis, structure, and second-harmonic generating properties of Cs(2)I(4)O(11). , 2004, Angewandte Chemie.

[42]  P. Halasyamani Asymmetric Cation Coordination in Oxide Materials: Influence of Lone-Pair Cations on the Intra-octahedral Distortion in d0 Transition Metals , 2004 .

[43]  P. Maggard,et al.  Alignment of acentric MoO3F33− anions in a polar material: (Ag3MoO3F3)(Ag3MoO4)Cl , 2003 .

[44]  Anthony L. Spek,et al.  Journal of , 1993 .

[45]  P. Halasyamani,et al.  New One-Dimensional Vanadyl Iodates: Hydrothermal Preparation, Structures, and NLO Properties of A[VO2(IO3)2] (A = K, Rb) and A[(VO)2(IO3)3O2] (A = NH4, Rb, Cs) , 2002 .

[46]  P. Halasyamani,et al.  Structural modulation of molybdenyl iodate architectures by alkali metal cations in AMoO3(IO3) (A = K, Rb, Cs): a facile route to new polar materials with large SHG responses. , 2002, Journal of the American Chemical Society.

[47]  Konstantin L. Vodopyanov,et al.  Tunable middle infrared downconversion in GaSe and AgGaS2 , 1998 .

[48]  Bai-chang Wu,et al.  Searching for new nonlinear optical materials on the basis of the anionic group theory , 1998 .

[49]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[50]  Wang,et al.  Pair-distribution function and its coupling-constant average for the spin-polarized electron gas. , 1992, Physical review. B, Condensed matter.

[51]  T. Arias,et al.  Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and co , 1992 .

[52]  Yicheng Wu,et al.  New nonlinear-optical crystal: LiB 3 O 5 , 1989 .

[53]  Chen Chuangtian,et al.  A NEW-TYPE ULTRAVIOLET SHG CRYSTAL——β-BaB 2 O 4 , 1985 .

[54]  M. Averbuch-Pouchot Crystal chemistry of some addition compounds of alkali iodates with telluric acid , 1983 .

[55]  D. Hamann,et al.  Norm-Conserving Pseudopotentials , 1979 .

[56]  T. E. Gier,et al.  KxRb1−xTiOPO4: A new nonlinear optical material , 1976 .

[57]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[58]  J. Galy,et al.  Stéréochimie des eléments comportant des paires non liées: Ge (II), As (III), Se (IV), Br (V), Sn (II), Sb (III), Te (IV), I (V), Xe (VI), Tl (I), Pb (II), et Bi (III) (oxydes, fluorures et oxyfluorures) , 1974 .

[59]  G. Boyd,et al.  Optical Nonlinearities in LiIO3 , 1969 .

[60]  S. K. Kurtz,et al.  A powder technique for the evaluation of nonlinear optical materials , 1968 .

[61]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[62]  Fei-Fei Mao,et al.  Ba4Ag5(IO3)6(I3O8)3(I4O11)2: A Nonlinear Optical Crystal Containing Two Types of Polyiodate Anions , 2022, Inorganic Chemistry Frontiers.

[63]  Zhao Zhenyu,et al.  High repetition rate dua-wavelength laser for under water detection , 2017 .

[64]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[65]  J. Goodenough JAHN-TELLER PHENOMENA IN SOLIDS , 1998 .

[66]  Chuangtian Chen,et al.  The anionic group theory of the non-linear optical effect and its applications in the development of new high-quality NLO crystals in the borate series , 1989 .

[67]  R. W. Terhune,et al.  Effects of Dispersion and Focusing on the Production of Optical Harmonics , 1962 .