Management of solid wastes from steelmaking and galvanizing processes: A brief review

Abstract Waste generation is inherent to any industrial process. Gaseous and liquid wastes are commonly treated in plants, resulting in clean streams and solid fractions. This solid fraction, along with the solid waste generated during the process itself, requires treatment and/or appropriate disposal in compliance with environmental laws, giving priority to reuse rather than final disposal in landfills. In the steel industry, the possibilities of solid waste disposal are important sources of research to achieve sustainable industrial standards. In this context, this paper presents an updated review of the management of slags, sludges, dusts, and mill scales generated by the steel industry, including precipitating sludges generated by galvanizing processes. Current knowledge and studies on the development of alternative management plans were also examined, bearing in mind the importance of sustainable development and the responsible consumption of natural resources.

[1]  J. Hazemann,et al.  Determination of zinc speciation in basic oxygen furnace flying dust by chemical extractions and X-ray spectroscopy. , 2008, Chemosphere.

[2]  V. N. Misra,et al.  An overview of utilization of slag and sludge from steel industries , 2007 .

[3]  Dina M. Sadek,et al.  Effect of cooling technique of blast furnace slag on the thermal behavior of solid cement bricks , 2014 .

[4]  D. Damidot,et al.  Chemical and mineralogical characterizations of LD converter steel slags: A multi-analytical techniques approach , 2010 .

[5]  A. S. El-Dieb,et al.  Performance of concrete mixtures made with electric arc furnace (EAF) steel slag aggregate produced in the Arabian Gulf region , 2012 .

[6]  S. Rocha,et al.  Selective extraction of zinc(II) over iron(II) from spent hydrochloric acid pickling effluents by liquid-liquid extraction. , 2008, Journal of hazardous materials.

[7]  Y. Yamakoshi,et al.  Catalytic Effect of Slags on the Formation of Bio-diesel Fuel , 2007 .

[8]  A. Vilela,et al.  Characterization and Reduction Behavior of Mill Scale , 2011 .

[9]  F. López,et al.  Sorption of heavy metals on blast furnace sludge , 1998 .

[10]  M. Alsheyab,et al.  Effect of electric arc furnace dust (EAFD) on properties of asphalt cement mixture , 2013 .

[11]  P. Dinakar,et al.  Design of self-compacting concrete with ground granulated blast furnace slag , 2013 .

[12]  I. Ortiz,et al.  Zinc recovery and waste sludge minimization from chromium passivation baths. , 2011, Journal of hazardous materials.

[13]  H. M. D. Costa,et al.  Efeito de um resíduo do processo de galvanoplastia sobre a vulcanização da borracha natural (NR) , 2009 .

[14]  Harold E. McGannon The making, shaping and treating of steel , 1971 .

[15]  F. J. Alguacil,et al.  Recycling of an electric arc furnace flue dust to obtain high grade ZnO. , 2007, Journal of hazardous materials.

[16]  J. Calmon,et al.  Effects of BOF steel slag and other cementitious materials on the rheological properties of self-compacting cement pastes , 2013 .

[17]  B. Mishra,et al.  Dephosphorization of LD slag by phosphorus solubilising bacteria , 2011 .

[18]  Serge Roudier,et al.  Best Available Techniques (BAT) Reference Document for Iron and Steel Production: Industrial Emissions Directive 2010/75/EU: Integrated Pollution Prevention and Control , 2012 .

[19]  M. Ranjan,et al.  Recycling of steel plant mill scale via iron ore sintering plant , 2012 .

[20]  Hyung‐Seok Kim,et al.  Activation of Ground Granulated Blast Furnace Slag Cement by Calcined Alunite , 2011 .

[21]  A. Vilela,et al.  Investigations on the use of electric- arc furnace dust (EAFD) in Pozzolan-modified Portland cement I (MP) pastes , 2006 .

[22]  M. I. Sánchez de Rojas,et al.  Chemical assessment of the electric arc furnace slag as construction material: Expansive compounds , 2004 .

[23]  L. M. Tavares,et al.  Alkaline leaching of zinc from electric arc furnace steel dust , 2006 .

[24]  A. Shaltout,et al.  Sintering mechanism of blast furnace slag-kaolin ceramics , 2010 .

[25]  M. L. Berndt,et al.  Properties of sustainable concrete containing fly ash, slag and recycled concrete aggregate , 2009 .

[26]  J. Torralba,et al.  Production of sponge iron powder by reduction of rolling mill scale , 2012 .

[27]  M. Ponte,et al.  Oily diatomite and galvanic wastes as raw materials for red ceramics fabrication , 2013 .

[28]  S. Stopić,et al.  Atmospheric leaching of EAF dust with diluted sulphuric acid , 2005 .

[29]  Dariush Mowla,et al.  Zinc recovery from blast furnace flue dust , 1997 .

[30]  A. Formoso,et al.  THE RECYCLING OF LINZ–DONAWITZ (LD) CONVERTER SLAG BY USE AS A LIMING AGENT ON PASTURE LAND , 1995 .

[31]  A. Bernardes,et al.  Galvanic sludge metals recovery by pyrometallurgical and hydrometallurgical treatment. , 2006, Journal of hazardous materials.

[32]  J. Labrincha,et al.  Kinetic study of the immobilization of galvanic sludge in clay-based matrix. , 2005, Journal of hazardous materials.

[33]  A. Bernardes,et al.  Characterisation of electric arc furnace dust generated during plain carbon steel production , 2008 .

[34]  J. Labrincha,et al.  Use of industrial wastes in the formulation of olivine green pigments , 2010 .

[35]  V. Stathopoulos,et al.  Structural ceramics containing electric arc furnace dust. , 2013, Journal of hazardous materials.

[36]  Kasım Mermerdaş,et al.  Recycling ground granulated blast furnace slag as cold bonded artificial aggregate partially used in self-compacting concrete. , 2012, Journal of hazardous materials.

[37]  M. A. Legodi,et al.  The preparation of magnetite, goethite, hematite and maghemite of pigment quality from mill scale iron waste , 2007 .

[38]  Boyd Davis,et al.  Characterization of basic oxygen furnace dust and zinc removal by acid leaching , 2004 .

[39]  Yong Guo,et al.  Preparation of nanometer-sized black iron oxide pigment by recycling of blast furnace flue dust. , 2010, Journal of hazardous materials.

[40]  H. Lu,et al.  Preparation and properties of glass–ceramics derived from blast-furnace slag by a ceramic-sintering process , 2009 .

[41]  Yunfeng Li,et al.  Recycling of industrial waste and performance of steel slag green concrete , 2009 .

[42]  Sanjay Kumar,et al.  Mechanical activation of granulated blast furnace slag and its effect on the properties and structure of portland slag cement , 2008 .

[43]  A. Bernardes,et al.  Metals recovery from galvanic sludge by sulfate roasting and thiosulfate leaching , 2014 .

[44]  M. B. Mansur,et al.  Selective removal of zinc from basic oxygen furnace sludges , 2012 .

[45]  T. Cheng,et al.  Combined glassification of EAF dust and incinerator fly ash. , 2003, Chemosphere.

[46]  F. M. Mohamed,et al.  Recycling of mill scale in sintering process , 2011 .

[47]  Edgar Dutra Zanotto,et al.  Glass and glass-ceramic from basic oxygen furnace (BOF) slag , 2002 .

[48]  Chiung-Fang Liu,et al.  Kinetics of the reaction of iron blast furance slag/hydrated lime sorbents with SO2 at low temperatures: effects of sorbent preparation conditions , 2004 .

[49]  Hannu Makkonen,et al.  Optimisation of steel plant recycling in Finland: dusts, scales and sludge , 2002 .

[50]  C. Kniess,et al.  Caracterização de pigmentos inorgânicos à base de Fe, Zn e Cr utilizando resíduo de galvanoplastia como matéria-prima , 2005 .

[51]  Denise Crocce Romano Espinosa,et al.  Characterisation of dusts and sludges generated during stainless steel production in Brazilian industries , 2003, Desvendando a Engenharia: sua abrangência e multidisciplinaridade.

[52]  Monika Jenko,et al.  Characterization of steel mill electric-arc furnace dust. , 2004, Journal of hazardous materials.

[53]  M. Silva,et al.  Caracterização microestrutural da escória de aciaria , 2006 .

[54]  M. Koutný,et al.  Stabilization/solidification of galvanic sludges by asphalt emulsions. , 2005, Journal of hazardous materials.

[55]  Bart Blanpain,et al.  Comparison of electric arc furnace dust treatment technologies using exergy efficiency , 2014 .

[56]  T. Havlík,et al.  Acidic leaching both of zinc and iron from basic oxygen furnace sludge. , 2011, Journal of hazardous materials.

[57]  P. S. Gonçalves,et al.  Incorporação de Resíduos Sólidos Galvânicos em Massas de Cerâmica Vermelha , 2002 .

[58]  Luckman Muhmood,et al.  Cementitious and pozzolanic behavior of electric arc furnace steel slags , 2009 .

[59]  F. Castro,et al.  Solvent extraction applied to the recovery of heavy metals from galvanic sludge. , 2005, Journal of hazardous materials.

[60]  Malik Cheriaf,et al.  Valorization of galvanic sludge in sulfoaluminate cement , 2009 .

[61]  P. Kavouras,et al.  Glass-ceramic materials from electric arc furnace dust. , 2007, Journal of hazardous materials.

[62]  T. Mansfeldt,et al.  Mercury in dumped blast furnace sludge. , 2014, Chemosphere.

[63]  Gang Kong,et al.  Toward cleaner production of hot dip galvanizing industry in China , 2010 .

[64]  E. Karamanova,et al.  Ceramics from blast furnace slag, kaolin and quartz , 2011 .

[65]  Sanjay Chandra,et al.  Utilization of Basic Oxygen Furnace (BOF) slag in the production of a hydraulic cement binder , 2006 .

[66]  M. B. Mansur,et al.  Statistical analysis of the spray roasting operation for the production of high quality Fe2O3 from steel pickling liquors , 2011 .

[67]  S. Monteiro,et al.  Recycling of electric arc furnace dust into red ceramic , 2013 .