The Absolute Arithmetic Continuum and the Unification Of all Numbers Great and Small

In his monograph On Numbers and Games, J. H. Conway introduced a real-closed field containing the reals and the ordinals as well as a great many less familiar numbers including −ω, ω/2, 1/ω, and ω − π to name only a few. Indeed, this particular real-closed field, which Conway calls No, is so remarkably inclusive that, subject to the proviso that numbers—construed here as members of ordered fields—be individually definable in terms of sets of NBG (von Neumann–Bernays–Godel set theory with global choice), it may be said to contain “All Numbers Great and Small.” In this respect, No bears much the same relation to ordered fields that the system ℝ of real numbers bears to Archimedean ordered fields. In Part I of the present paper, we suggest that whereas ℝ should merely be regarded as constituting an arithmetic continuum (modulo the Archimedean axiom), No may be regarded as a sort of absolute arithmetic continuum (modulo NBG), and in Part II we draw attention to the unifying framework No provides not only for the reals and the ordinals but also for an array of non-Archimedean ordered number systems that have arisen in connection with the theories of non-Archimedean ordered algebraic and geometric systems, the theory of the rate of growth of real functions and nonstandard analysis. In addition to its inclusive structure as an ordered field, the system No of surreal numbers has a rich algebraico-tree-theoretic structure—a simplicity hierarchical structure—that emerges from the recursive clauses in terms of which it is defined. In the development of No outlined in the present paper, in which the surreals emerge vis-a-vis a generalization of the von Neumann ordinal construction, the simplicity hierarchical features of No are brought to the fore and play central roles in the aforementioned unification of systems of numbers great and small and in some of the more revealing characterizations of No as an absolute continuum.

[1]  Giuseppe Veronese Grundzüge der Geometrie von mehreren Dimensionen und mehreren Arten gradliniger Einheiten in elementarer Form entwickelt , 1894 .

[2]  Antongiulio Fornasiero Integration on surreal numbers , 2004 .

[3]  Federigo Enriques,et al.  Questioni riguardanti le matematiche elementari , 1912 .

[4]  Dieter Klaua,et al.  Rational and Real Ordinal Numbers , 1994 .

[5]  P. Bois-Reymond Ueber asymptotische Werthe, infinitäre Approximationen und infinitäre Auflösung von Gleichungen , 1875 .

[6]  Hisahiro Tamano,et al.  On Rings of Real Valued Continuous Functions , 1958 .

[7]  Lou van den Dries,et al.  Closed asymptotic couples , 2000 .

[8]  David Hilbert,et al.  The Foundations of Geometry , 1903, The Mathematical Gazette.

[9]  H. Hahn,et al.  Über die nichtarchimedischen Größensysteme , 1995 .

[10]  Mary Tiles,et al.  Georg Cantor: His Mathematics and Philosophy of the Infinite. , 1982 .

[11]  Philip Ehrlich Absolutely saturated models , 1989 .

[12]  O. Stolz Zur Geometrie der Alten, insbesondere über ein Axiom des archimedes , 1883 .

[13]  Robert Goldblatt,et al.  Lectures on the hyperreals , 1998 .

[14]  Matthew E. Moore New essays on Peirce's mathematical philosophy , 2010 .

[15]  Bjarni Jónsson,et al.  Homogeneous Universal Relational Systems. , 1960 .

[16]  Jaakko Hintikka,et al.  From Dedekind to Gödel : essays on the development of the foundations of mathematics , 1995 .

[17]  N. L. Alling,et al.  Foundations of Analysis Over Surreal Number Fields , 2012 .

[18]  Antongiulio Fornasiero,et al.  Embedding Henselian fields into power series , 2006 .

[19]  A. Robinson Non-standard analysis , 1966 .

[20]  M. Boshernitzan,et al.  An extension of hardy’s classL of “orders of infinity” , 1981 .

[21]  Alexander P. Pyshchev Uniform liftings of continuous mappings , 2011, J. Log. Anal..

[22]  Lou van den Dries,et al.  Fields of surreal numbers and exponentiation , 2001 .

[23]  Alexander Ostrowski,et al.  Untersuchungen zur arthmetischen Theorie der Krper: Die Theorie der Teilbarkeit in allgemeinen Krpern , 1935 .

[24]  Charles Parsons Sets and Classes , 1974 .

[25]  F. Hausdorff Grundzüge der Mengenlehre , 1914 .

[26]  Sibylla Prieß-Crampe,et al.  Angeordnete Strukturen : Gruppen, Körper, projektive Ebenen , 1983 .

[27]  Angus Macintyre,et al.  Logarithmic‐Exponential Power Series , 1997 .

[28]  R. Vaught,et al.  Homogeneous Universal Models , 1962 .

[29]  Azriel Levy,et al.  On Ackermann's set theory , 1959, Journal of Symbolic Logic.

[30]  Azriel Levy The Role of Classes in Set Theory , 1976 .

[31]  Yehoshua Bar-Hillel,et al.  Foundations of Set Theory , 2012 .

[32]  Georg Cantor,et al.  Georg Cantor : Briefe , 1991 .

[33]  Gerhard Hessenberg Grundbegriffe der Mengenlehre , 1906 .

[34]  David Hilbert,et al.  Grundlagen der Geometrie , 2022 .

[35]  Sibylla Priess-Crampe Zum Hahnschen Einbettungssatz für angeordnete Körper , 1973 .

[36]  Wilhelm Ackermann,et al.  Zur Axiomatik der Mengenlehre , 1956 .

[37]  Leonard Gillman,et al.  Rings of continuous functions , 1961 .

[38]  T. J. I'A. B. Orders of Infinity: the “Infinitärcalcül” of Paul du Bois-Reymond , 1911, Nature.

[39]  H. Gonshor An Introduction to the Theory of Surreal Numbers , 1986 .

[40]  Philip Ehrlich The Absolute Arithmetic and Geometric Continua , 1986, PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association.

[41]  Stuart Hannabuss,et al.  Encyclopedia of Philosophy (2nd edition) , 2006 .

[42]  P. Bois-Reymond,et al.  Die allgemeine Functionentheorie , 1968 .

[43]  G. W. Leibniz,et al.  Die Philosophischen Schriften von Gottfried Wilhelm Leibniz , 1875 .

[44]  William N. Reinhardt,et al.  Ackermann's set theory equals ZF , 1970 .

[45]  J. Esterle,et al.  Solution d'un problème d'Erdős,Gillman etHenriksen et application a l'étude des homomorphismes de $$C$$ (K)(K) , 1977 .

[46]  R. Goldblatt Lectures on the hyperreals : an introduction to nonstandard analysis , 1998 .

[47]  J. Nagata,et al.  On rings of continuous functions , 1977 .

[48]  Salma Kuhlmann,et al.  Ordered exponential fields , 1999 .

[49]  J. Cremona,et al.  Proceedings of the London Mathematical Society , 1893 .

[50]  Jean-Pierre Ressayre,et al.  Every Real Closed Field Has an Integer Part , 1993, J. Symb. Log..

[51]  Jean-Michel Salanskis,et al.  Le Labyrinthe du Continu Colloque de Cerisy , 1992 .

[52]  J. Plotkin,et al.  Hausdorff on ordered sets , 2005 .

[53]  L. Fuchs Partially Ordered Algebraic Systems , 2011 .

[54]  Philip Ehrlich John L. Bell. The continuous and the infinitesimal in mathematics and philosophy. Polimetrica, International Scientific Publisher, Monza-Milano, 2005, 349 pp. , 2007, Bulletin of Symbolic Logic.

[55]  H. Keisler Foundations of infinitesimal calculus , 1976 .

[56]  Philip Ehrlich Dedekind cuts of Archimedean complete ordered abelian groups , 1997 .

[57]  W. Krull,et al.  Allgemeine Bewertungstheorie. , 1932 .

[58]  F. E. J. Linton,et al.  The collected papers of Emil Artin , 1966 .

[59]  N. L. Alling,et al.  On the existence of real-closed fields that are _{}-sets of power ℵ_{} , 1962 .

[60]  Nicolas Bourbaki,et al.  Elements of mathematics , 2004 .

[61]  R.K. Guy,et al.  On numbers and games , 1978, Proceedings of the IEEE.

[62]  H. Jerome Keisler,et al.  The Hyperreal Line , 1994 .

[63]  Felix Hausdorff,et al.  Theory of sets and topology : in honour of Felix Housdorff (1868-1942) , 1972 .

[64]  Archive for History of Exact Sciences , 1960, Nature.

[65]  Philip Ehrlich,et al.  Real Numbers, Generalizations of the Reals and Theories of Continua (Synthese Library, Vol. 242) , 1994 .

[66]  T. Crilly From Kant to Hilbert: a sourcebook in the foundations of mathematics , William Ewald (ed.). 2 vols. Pp. 1340. 1999. £50 (Paperback). ISBN 0 19 850537 X (Oxford University Press). , 2000, The Mathematical Gazette.

[67]  Philip Ehrlich,et al.  All Numbers Great and Small , 1994 .

[68]  Jouko Väänänen,et al.  Logic Colloquium '90 , 2002 .

[69]  Edwin Hewitt,et al.  Rings of real-valued continuous functions. I , 1948 .

[70]  E. Artin,et al.  Algebraische Konstruktion reeller Körper , 1927 .

[71]  A. Levy,et al.  Principles of partial reflection in the set theories of Zermelo and Ackermann , 1961 .

[72]  John Dauns,et al.  An embedding theorem for lattice-ordered fields , 1969 .

[73]  Akihiro Kanamori,et al.  Gödel and Set Theory , 2007, Bulletin of Symbolic Logic.

[74]  Philip Ehrlich Number systems with simplicity hierarchies: a generalization of Conway's theory of surreal numbers , 2001, Journal of Symbolic Logic.

[75]  Philip Ehrlich,et al.  Hahn’s Über die Nichtarchimedischen Grössensysteme and the Development of the Modern Theory of Magnitudes and Numbers to Measure Them , 1995 .

[76]  Paul Conrad On ordered division rings , 1954 .

[77]  D. Laugwitz,et al.  Eine Erweiterung der Infinitesimalrechnung , 1958 .

[78]  H. Putnam,et al.  Reasoning and the Logic of Things. The Cambridge Conferences Lectures of 1898. , 1993 .

[79]  G. Hardy Properties of Logarithmico‐Exponential Functions , 2022 .

[80]  A. Macintyre,et al.  The Elementary Theory of Restricted Analytic Fields with Exponentiation , 1994 .

[81]  G. Cantor,et al.  Grundlagen einer allgemeinen Mannichfaltigkeitslehre : ein mathematisch-philosophischer Versuch in der Lehre des Unendlichen , 1883 .

[82]  Philip W. Carruth,et al.  Arithmetic of ordinals with applications to the theory of ordered Abelian groups , 1942 .

[83]  P. Bois-Reymond Ueber die Paradoxen des Infinitärcalcüls , 1877 .

[84]  F. R. Drake,et al.  Set theory : an introduction to large cardinals , 1974 .

[85]  Annali DI Matematica,et al.  Annali di Matematica pura ed applicata , 1892 .

[86]  M. H. Mourgues,et al.  A transfinite version of Puiseux's theorem, with applications to real closed fields , 1993 .

[87]  Philip Ehrlich,et al.  The Rise of non-Archimedean Mathematics and the Roots of a Misconception I: The Emergence of non-Archimedean Systems of Magnitudes , 2006 .

[88]  T. Skolem Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen , 1934 .

[89]  Philip Ehrlich Conway names, the simplicity hierarchy and the surreal number tree , 2011, J. Log. Anal..

[90]  A. Kosinski,et al.  :From Kant to Hilbert: A Source Book in the Foundations of Mathematics , 2003 .

[91]  Kaiserl. Akademie der Wissenschaften in Wien.,et al.  Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Klasse. , 1912 .

[92]  Irving Kaplansky,et al.  Maximal fields with valuations, II , 1942 .

[93]  G. Cantor,et al.  Gesammelte Abhandlungen mathematischen und philosophischen Inhalts , 1934 .

[94]  Philip Ehrlich,et al.  An alternative construction of Conway's ordered field No , 1988 .

[95]  Pedro García Barreno,et al.  Academia de Ciencias Exactas, Físicas y Naturales , 2002 .

[96]  G. Fisher,et al.  The infinite and infinitesimal quantities of du Bois-Reymond and their reception , 1981 .

[97]  N. L. Alling,et al.  CONWAY'S FIELD OF SURREAL NUMBERS , 1985 .

[98]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[99]  Alexander Ostrowski,et al.  Untersuchungen zur arithmetischen Theorie der Körper , 1935 .

[100]  O. Stolz Ueber die Grenzwerthe der Quotienten , 1878 .

[101]  P. Erdös,et al.  An Isomorphism Theorem for Real-Closed Fields , 1955 .

[102]  Paul Bois-Reymond Sur la grandeur relative des infinis des fonctions , 1870 .

[103]  A. H. Clifford,et al.  Note on Hahn’s theorem on ordered abelian groups , 1954 .

[104]  D. Hilbert,et al.  Über homogene Functionen. , 1900 .

[105]  Philip Ehrlich,et al.  FROM COMPLETENESS TO ARCHIMEDEAN COMPLETENES , 2004, Synthese.