The Absolute Arithmetic Continuum and the Unification Of all Numbers Great and Small
暂无分享,去创建一个
[1] Giuseppe Veronese. Grundzüge der Geometrie von mehreren Dimensionen und mehreren Arten gradliniger Einheiten in elementarer Form entwickelt , 1894 .
[2] Antongiulio Fornasiero. Integration on surreal numbers , 2004 .
[3] Federigo Enriques,et al. Questioni riguardanti le matematiche elementari , 1912 .
[4] Dieter Klaua,et al. Rational and Real Ordinal Numbers , 1994 .
[5] P. Bois-Reymond. Ueber asymptotische Werthe, infinitäre Approximationen und infinitäre Auflösung von Gleichungen , 1875 .
[6] Hisahiro Tamano,et al. On Rings of Real Valued Continuous Functions , 1958 .
[7] Lou van den Dries,et al. Closed asymptotic couples , 2000 .
[8] David Hilbert,et al. The Foundations of Geometry , 1903, The Mathematical Gazette.
[9] H. Hahn,et al. Über die nichtarchimedischen Größensysteme , 1995 .
[10] Mary Tiles,et al. Georg Cantor: His Mathematics and Philosophy of the Infinite. , 1982 .
[11] Philip Ehrlich. Absolutely saturated models , 1989 .
[12] O. Stolz. Zur Geometrie der Alten, insbesondere über ein Axiom des archimedes , 1883 .
[13] Robert Goldblatt,et al. Lectures on the hyperreals , 1998 .
[14] Matthew E. Moore. New essays on Peirce's mathematical philosophy , 2010 .
[15] Bjarni Jónsson,et al. Homogeneous Universal Relational Systems. , 1960 .
[16] Jaakko Hintikka,et al. From Dedekind to Gödel : essays on the development of the foundations of mathematics , 1995 .
[17] N. L. Alling,et al. Foundations of Analysis Over Surreal Number Fields , 2012 .
[18] Antongiulio Fornasiero,et al. Embedding Henselian fields into power series , 2006 .
[19] A. Robinson. Non-standard analysis , 1966 .
[20] M. Boshernitzan,et al. An extension of hardy’s classL of “orders of infinity” , 1981 .
[21] Alexander P. Pyshchev. Uniform liftings of continuous mappings , 2011, J. Log. Anal..
[22] Lou van den Dries,et al. Fields of surreal numbers and exponentiation , 2001 .
[23] Alexander Ostrowski,et al. Untersuchungen zur arthmetischen Theorie der Krper: Die Theorie der Teilbarkeit in allgemeinen Krpern , 1935 .
[24] Charles Parsons. Sets and Classes , 1974 .
[25] F. Hausdorff. Grundzüge der Mengenlehre , 1914 .
[26] Sibylla Prieß-Crampe,et al. Angeordnete Strukturen : Gruppen, Körper, projektive Ebenen , 1983 .
[27] Angus Macintyre,et al. Logarithmic‐Exponential Power Series , 1997 .
[28] R. Vaught,et al. Homogeneous Universal Models , 1962 .
[29] Azriel Levy,et al. On Ackermann's set theory , 1959, Journal of Symbolic Logic.
[30] Azriel Levy. The Role of Classes in Set Theory , 1976 .
[31] Yehoshua Bar-Hillel,et al. Foundations of Set Theory , 2012 .
[32] Georg Cantor,et al. Georg Cantor : Briefe , 1991 .
[33] Gerhard Hessenberg. Grundbegriffe der Mengenlehre , 1906 .
[34] David Hilbert,et al. Grundlagen der Geometrie , 2022 .
[35] Sibylla Priess-Crampe. Zum Hahnschen Einbettungssatz für angeordnete Körper , 1973 .
[36] Wilhelm Ackermann,et al. Zur Axiomatik der Mengenlehre , 1956 .
[37] Leonard Gillman,et al. Rings of continuous functions , 1961 .
[38] T. J. I'A. B.. Orders of Infinity: the “Infinitärcalcül” of Paul du Bois-Reymond , 1911, Nature.
[39] H. Gonshor. An Introduction to the Theory of Surreal Numbers , 1986 .
[40] Philip Ehrlich. The Absolute Arithmetic and Geometric Continua , 1986, PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association.
[41] Stuart Hannabuss,et al. Encyclopedia of Philosophy (2nd edition) , 2006 .
[42] P. Bois-Reymond,et al. Die allgemeine Functionentheorie , 1968 .
[43] G. W. Leibniz,et al. Die Philosophischen Schriften von Gottfried Wilhelm Leibniz , 1875 .
[44] William N. Reinhardt,et al. Ackermann's set theory equals ZF , 1970 .
[45] J. Esterle,et al. Solution d'un problème d'Erdős,Gillman etHenriksen et application a l'étude des homomorphismes de $$C$$ (K)(K) , 1977 .
[46] R. Goldblatt. Lectures on the hyperreals : an introduction to nonstandard analysis , 1998 .
[47] J. Nagata,et al. On rings of continuous functions , 1977 .
[48] Salma Kuhlmann,et al. Ordered exponential fields , 1999 .
[49] J. Cremona,et al. Proceedings of the London Mathematical Society , 1893 .
[50] Jean-Pierre Ressayre,et al. Every Real Closed Field Has an Integer Part , 1993, J. Symb. Log..
[51] Jean-Michel Salanskis,et al. Le Labyrinthe du Continu Colloque de Cerisy , 1992 .
[52] J. Plotkin,et al. Hausdorff on ordered sets , 2005 .
[53] L. Fuchs. Partially Ordered Algebraic Systems , 2011 .
[54] Philip Ehrlich. John L. Bell. The continuous and the infinitesimal in mathematics and philosophy. Polimetrica, International Scientific Publisher, Monza-Milano, 2005, 349 pp. , 2007, Bulletin of Symbolic Logic.
[55] H. Keisler. Foundations of infinitesimal calculus , 1976 .
[56] Philip Ehrlich. Dedekind cuts of Archimedean complete ordered abelian groups , 1997 .
[57] W. Krull,et al. Allgemeine Bewertungstheorie. , 1932 .
[58] F. E. J. Linton,et al. The collected papers of Emil Artin , 1966 .
[59] N. L. Alling,et al. On the existence of real-closed fields that are _{}-sets of power ℵ_{} , 1962 .
[60] Nicolas Bourbaki,et al. Elements of mathematics , 2004 .
[61] R.K. Guy,et al. On numbers and games , 1978, Proceedings of the IEEE.
[62] H. Jerome Keisler,et al. The Hyperreal Line , 1994 .
[63] Felix Hausdorff,et al. Theory of sets and topology : in honour of Felix Housdorff (1868-1942) , 1972 .
[64] Archive for History of Exact Sciences , 1960, Nature.
[65] Philip Ehrlich,et al. Real Numbers, Generalizations of the Reals and Theories of Continua (Synthese Library, Vol. 242) , 1994 .
[66] T. Crilly. From Kant to Hilbert: a sourcebook in the foundations of mathematics , William Ewald (ed.). 2 vols. Pp. 1340. 1999. £50 (Paperback). ISBN 0 19 850537 X (Oxford University Press). , 2000, The Mathematical Gazette.
[67] Philip Ehrlich,et al. All Numbers Great and Small , 1994 .
[68] Jouko Väänänen,et al. Logic Colloquium '90 , 2002 .
[69] Edwin Hewitt,et al. Rings of real-valued continuous functions. I , 1948 .
[70] E. Artin,et al. Algebraische Konstruktion reeller Körper , 1927 .
[71] A. Levy,et al. Principles of partial reflection in the set theories of Zermelo and Ackermann , 1961 .
[72] John Dauns,et al. An embedding theorem for lattice-ordered fields , 1969 .
[73] Akihiro Kanamori,et al. Gödel and Set Theory , 2007, Bulletin of Symbolic Logic.
[74] Philip Ehrlich. Number systems with simplicity hierarchies: a generalization of Conway's theory of surreal numbers , 2001, Journal of Symbolic Logic.
[75] Philip Ehrlich,et al. Hahn’s Über die Nichtarchimedischen Grössensysteme and the Development of the Modern Theory of Magnitudes and Numbers to Measure Them , 1995 .
[76] Paul Conrad. On ordered division rings , 1954 .
[77] D. Laugwitz,et al. Eine Erweiterung der Infinitesimalrechnung , 1958 .
[78] H. Putnam,et al. Reasoning and the Logic of Things. The Cambridge Conferences Lectures of 1898. , 1993 .
[79] G. Hardy. Properties of Logarithmico‐Exponential Functions , 2022 .
[80] A. Macintyre,et al. The Elementary Theory of Restricted Analytic Fields with Exponentiation , 1994 .
[81] G. Cantor,et al. Grundlagen einer allgemeinen Mannichfaltigkeitslehre : ein mathematisch-philosophischer Versuch in der Lehre des Unendlichen , 1883 .
[82] Philip W. Carruth,et al. Arithmetic of ordinals with applications to the theory of ordered Abelian groups , 1942 .
[83] P. Bois-Reymond. Ueber die Paradoxen des Infinitärcalcüls , 1877 .
[84] F. R. Drake,et al. Set theory : an introduction to large cardinals , 1974 .
[85] Annali DI Matematica,et al. Annali di Matematica pura ed applicata , 1892 .
[86] M. H. Mourgues,et al. A transfinite version of Puiseux's theorem, with applications to real closed fields , 1993 .
[87] Philip Ehrlich,et al. The Rise of non-Archimedean Mathematics and the Roots of a Misconception I: The Emergence of non-Archimedean Systems of Magnitudes , 2006 .
[88] T. Skolem. Über die Nicht-charakterisierbarkeit der Zahlenreihe mittels endlich oder abzählbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen , 1934 .
[89] Philip Ehrlich. Conway names, the simplicity hierarchy and the surreal number tree , 2011, J. Log. Anal..
[90] A. Kosinski,et al. :From Kant to Hilbert: A Source Book in the Foundations of Mathematics , 2003 .
[91] Kaiserl. Akademie der Wissenschaften in Wien.,et al. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Klasse. , 1912 .
[92] Irving Kaplansky,et al. Maximal fields with valuations, II , 1942 .
[93] G. Cantor,et al. Gesammelte Abhandlungen mathematischen und philosophischen Inhalts , 1934 .
[94] Philip Ehrlich,et al. An alternative construction of Conway's ordered field No , 1988 .
[95] Pedro García Barreno,et al. Academia de Ciencias Exactas, Físicas y Naturales , 2002 .
[96] G. Fisher,et al. The infinite and infinitesimal quantities of du Bois-Reymond and their reception , 1981 .
[97] N. L. Alling,et al. CONWAY'S FIELD OF SURREAL NUMBERS , 1985 .
[98] Chen C. Chang,et al. Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .
[99] Alexander Ostrowski,et al. Untersuchungen zur arithmetischen Theorie der Körper , 1935 .
[100] O. Stolz. Ueber die Grenzwerthe der Quotienten , 1878 .
[101] P. Erdös,et al. An Isomorphism Theorem for Real-Closed Fields , 1955 .
[102] Paul Bois-Reymond. Sur la grandeur relative des infinis des fonctions , 1870 .
[103] A. H. Clifford,et al. Note on Hahn’s theorem on ordered abelian groups , 1954 .
[104] D. Hilbert,et al. Über homogene Functionen. , 1900 .
[105] Philip Ehrlich,et al. FROM COMPLETENESS TO ARCHIMEDEAN COMPLETENES , 2004, Synthese.