Pan-Genomic Analysis Provides Insights into the Genomic Variation and Evolution of Salmonella Paratyphi A

Salmonella Paratyphi A (S. Paratyphi A) is a highly adapted, human-specific pathogen that causes paratyphoid fever. Cases of paratyphoid fever have recently been increasing, and the disease is becoming a major public health concern, especially in Eastern and Southern Asia. To investigate the genomic variation and evolution of S. Paratyphi A, a pan-genomic analysis was performed on five newly sequenced S. Paratyphi A strains and two other reference strains. A whole genome comparison revealed that the seven genomes are collinear and that their organization is highly conserved. The high rate of substitutions in part of the core genome indicates that there are frequent homologous recombination events. Based on the changes in the pan-genome size and cluster number (both in the core functional genes and core pseudogenes), it can be inferred that the sharply increasing number of pseudogene clusters may have strong correlation with the inactivation of functional genes, and indicates that the S. Paratyphi A genome is being degraded.

[1]  Eric Johansen,et al.  Streptococcus thermophilus Core Genome: Comparative Genome Hybridization Study of 47 Strains , 2008, Applied and Environmental Microbiology.

[2]  Julie D Thompson,et al.  Multiple Sequence Alignment Using ClustalW and ClustalX , 2003, Current protocols in bioinformatics.

[3]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[4]  Daniel Falush,et al.  A bimodal pattern of relatedness between the Salmonella Paratyphi A and Typhi genomes: convergence or divergence by homologous recombination? , 2006, Genome research.

[5]  B. Pang,et al.  Optimization of pulsed-field gel electrophoresis protocols for Salmonella Paratyphi A subtyping. , 2012, Foodborne pathogens and disease.

[6]  J. Farrar,et al.  Emerging trends in enteric fever in Nepal: 9124 cases confirmed by blood culture 1993-2003. , 2008, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[7]  J. Musser,et al.  Evolutionary genetic relationships of clones of Salmonella serovars that cause human typhoid and other enteric fevers , 1990, Infection and immunity.

[8]  A. Pandey,et al.  Drug-resistant Salmonella enterica serotype paratyphi A in India. , 2000, Emerging infectious diseases.

[9]  Rolf Apweiler,et al.  InterProScan: protein domains identifier , 2005, Nucleic Acids Res..

[10]  G. Karnam,et al.  Differentially Evolved Genes of Salmonella Pathogenicity Islands: Insights into the Mechanism of Host Specificity in Salmonella , 2008, PloS one.

[11]  Daniel Falush,et al.  Mismatch induced speciation in Salmonella: model and data , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[12]  Kim Rutherford,et al.  Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18 , 2001, Nature.

[13]  B. Mandal Typhoid and paratyphoid fever. , 1979, Clinics in gastroenterology.

[14]  A. B. CiusnE,et al.  Typhoid fever. , 1967, The Journal of the Arkansas Medical Society.

[15]  C. Woods,et al.  Emergence of Salmonella enterica serotype Paratyphi A as a major cause of enteric fever in Kathmandu, Nepal. , 2006, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[16]  Kan Bia Epidemics of Typhoid and Paratyphoid Fever From 1995 Through 2004 in China , 2005 .

[17]  C. Pál,et al.  Adaptive evolution of bacterial metabolic networks by horizontal gene transfer , 2005, Nature Genetics.

[18]  Rekha R Meyer,et al.  Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid , 2004, Nature Genetics.

[19]  J. Fierer,et al.  Diverse virulence traits underlying different clinical outcomes of Salmonella infection. , 2001, The Journal of clinical investigation.

[20]  J. Crump,et al.  Global trends in typhoid and paratyphoid Fever. , 2010, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[21]  N. Perna,et al.  progressiveMauve: Multiple Genome Alignment with Gene Gain, Loss and Rearrangement , 2010, PloS one.

[22]  J. Farrar,et al.  High-throughput bacterial SNP typing identifies distinct clusters of Salmonella Typhi causing typhoid in Nepalese children , 2010, BMC infectious diseases.

[23]  Paul D. Shaw,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2022 .

[24]  Ziheng Yang PAML 4: phylogenetic analysis by maximum likelihood. , 2007, Molecular biology and evolution.

[25]  J. Wain,et al.  Salmonella Paratyphi A Rates, Asia , 2005, Emerging infectious diseases.

[26]  J. Townsend,et al.  Horizontal gene transfer, genome innovation and evolution , 2005, Nature Reviews Microbiology.

[27]  P. Gajer,et al.  The Pangenome Structure of Escherichia coli: Comparative Genomic Analysis of E. coli Commensal and Pathogenic Isolates , 2008, Journal of bacteriology.

[28]  M. Kimura Preponderance of synonymous changes as evidence for the neutral theory of molecular evolution , 1977, Nature.

[29]  Steven Salzberg,et al.  Identifying bacterial genes and endosymbiont DNA with Glimmer , 2007, Bioinform..

[30]  J. Lawrence,et al.  Horizontal and vertical gene transfer: the life history of pathogens. , 2005, Contributions to microbiology.

[31]  X. Didelot,et al.  A comparison of homologous recombination rates in bacteria and archaea , 2009, The ISME Journal.

[32]  Z. Bhutta,et al.  Genetic diversity of Salmonella enterica serovar Paratyphi A from different geographical regions in Asia , 2002, Journal of applied microbiology.

[33]  R. Wilson,et al.  Complete genome sequence of Salmonella enterica serovar Typhimurium LT2 , 2001, Nature.

[34]  J. Rougemont,et al.  Comparative genomic and phylogeographic analysis of Mycobacterium leprae , 2009, Nature Genetics.

[35]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[36]  P. Donnelly,et al.  Recombination and Population Structure in Salmonella enterica , 2011, PLoS genetics.

[37]  Julian Parkhill,et al.  Pseudogene accumulation in the evolutionary histories of Salmonella enterica serovars Paratyphi A and Typhi , 2009, BMC Genomics.

[38]  G. Olsen,et al.  Comparative genomics of closely related salmonellae. , 2002, Trends in microbiology.

[39]  A. Kapil,et al.  Paratyphoid fever in India: An emerging problem. , 1999, Emerging infectious diseases.

[40]  R. Durbin,et al.  GeneWise and Genomewise. , 2004, Genome research.

[41]  Christian E. V. Storm,et al.  Automatic clustering of orthologs and in-paralogs from pairwise species comparisons. , 2001, Journal of molecular biology.

[42]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[43]  R. Johnston,et al.  Salmonella paratyphi C: Genetic Divergence from Salmonella choleraesuis and Pathogenic Convergence with Salmonella typhi , 2009, PloS one.

[44]  B. Coburn,et al.  Salmonella, the host and disease: a brief review , 2007, Immunology and cell biology.

[45]  H. Tettelin,et al.  The microbial pan-genome. , 2005, Current opinion in genetics & development.

[46]  Siu-Ming Yiu,et al.  SOAP2: an improved ultrafast tool for short read alignment , 2009, Bioinform..

[47]  C. Kurland,et al.  Horizontal gene transfer: A critical view , 2003 .

[48]  J. Fierer,et al.  Non-typhoid Salmonella: a review. , 2000, Current clinical topics in infectious diseases.

[49]  David R. Riley,et al.  Comparative genomics: the bacterial pan-genome. , 2008, Current opinion in microbiology.

[50]  Mark Borodovsky,et al.  Prokaryotic Gene Prediction Using GeneMark and GeneMark.hmm , 2003, Current protocols in bioinformatics.

[51]  X. Huang,et al.  CAP3: A DNA sequence assembly program. , 1999, Genome research.

[52]  Gang Liu,et al.  Automatic clustering of orthologs and inparalogs shared by multiple proteomes , 2006, ISMB.

[53]  Jaideep P. Sundaram,et al.  Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial "pan-genome". , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Evan Powell,et al.  Comparative Genomic Analyses of Seventeen Streptococcus pneumoniae Strains: Insights into the Pneumococcal Supragenome , 2007, Journal of bacteriology.

[55]  Guy Plunkett,et al.  Comparative Genomics of Salmonellaenterica Serovar Typhi Strains Ty2 and CT18 , 2003, Journal of bacteriology.

[56]  J. Wain,et al.  High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi , 2008, Nature Genetics.

[57]  J. Crump,et al.  The global burden of typhoid fever. , 2004, Bulletin of the World Health Organization.