Non-contextual chocolate balls versus value indefinite quantum cryptography

Some quantum cryptographic protocols can be implemented with specially prepared metaphorical chocolate balls representing local hidden variables, others protected by value indefiniteness cannot. This latter feature, which follows from Bell- and Kochen-Specker type arguments, is only present in systems with three or more mutually exclusive outcomes. Conversely, there exist local hidden variable models based on chocolate ball configurations utilizable for cryptography which cannot be realized by quantum systems. The possibility that quantum cryptography supported by value indefiniteness (contextuality) has practical advantages over more conventional quantum cryptographic protocols remains highly speculative.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Karl Svozil,et al.  Are simultaneous Bell measurements possible , 2006 .

[3]  Edward F. Moore,et al.  Gedanken-Experiments on Sequential Machines , 1956 .

[4]  N. Gisin,et al.  Quantum cryptography , 1998 .

[5]  Neal Zierler,et al.  Boolean Embeddings of Orthomodular Sets and Quantum Logic , 1965 .

[6]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[7]  H. Weinfurter,et al.  A fast and compact quantum random number generator , 1999, quant-ph/9912118.

[8]  V. Alda On $0-1$ measure for projectors. II , 1981 .

[9]  J. Neumann,et al.  The Logic of Quantum Mechanics , 1936 .

[10]  Niels Bohr,et al.  Discussion with Einstein on Epistemological Problems in Atomic Physics , 1996 .

[11]  A. Cabello,et al.  Bell-Kochen-Specker theorem: A proof with 18 vectors , 1996, quant-ph/9706009.

[12]  A. Zeilinger,et al.  Going Beyond Bell’s Theorem , 2007, 0712.0921.

[13]  Richard J. Greechie,et al.  Orthomodular Lattices Admitting No States , 1971 .

[14]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[15]  A. Zeilinger,et al.  Multiparticle Interferometry and the Superposition Principle , 1993 .

[16]  Omologic as a Hilbert Type Calculus , 1981 .

[17]  F. Murnaghan The unitary and rotation groups , 1962 .

[18]  H Bechmann-Pasquinucci,et al.  Quantum cryptography with 3-state systems. , 2000, Physical review letters.

[19]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[20]  Ehud Hrushovski,et al.  Generalizations of Kochen and Specker's theorem and the effectiveness of Gleason's theorem , 2003 .

[21]  Y. Peres Iterating Von Neumann's Procedure for Extracting Random Bits , 1992 .

[22]  D. Meyer Finite Precision Measurement Nullifies the Kochen-Specker Theorem , 1999, quant-ph/9905080.

[23]  N. Mermin Hidden variables and the two theorems of John Bell , 1993, 1802.10119.

[24]  Stephen Wiesner,et al.  Conjugate coding , 1983, SIGA.

[25]  N. Bohr II - Can Quantum-Mechanical Description of Physical Reality be Considered Complete? , 1935 .

[26]  K. Svozil Logical Equivalence Between Generalized Urn Models and Finite Automata , 2002, quant-ph/0209136.

[27]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[28]  Paul A. Samuelson Constructing an Unbiased Random Sequence , 1968 .

[29]  John Rarity,et al.  Quantum Random-number Generation and Key Sharing , 1994 .

[30]  Allen Stairs,et al.  Incompleteness, Nonlocality and Realism: A Prolegomenon to the Philosophy of Quantum Mechanics. , 1990 .

[31]  J. Neumann Mathematische grundlagen der Quantenmechanik , 1935 .

[32]  J. van Leeuwen,et al.  Theoretical Computer Science , 2003, Lecture Notes in Computer Science.

[33]  K. Svozil Contexts in Quantum, Classical and Partition Logic , 2006, quant-ph/0609209.

[34]  Patrick Lacharme,et al.  Post-Processing Functions for a Biased Physical Random Number Generator , 2008, FSE.

[35]  Yuriy Makhlin,et al.  Decoherence from ensembles of two-level fluctuators , 2006 .

[36]  C. Freund Incompleteness , 1888, The Hospital.

[37]  H. Dishkant,et al.  Logic of Quantum Mechanics , 1976 .

[38]  Cristian S. Calude,et al.  Quantum randomness and value indefiniteness , 2006, quant-ph/0611029.

[39]  M. Born Zur Quantenmechanik der Stoßvorgänge , 1926 .

[40]  N. Mermin Quantum Computer Science , 2007 .

[41]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[42]  M. Kafatos Bell's theorem, quantum theory and conceptions of the universe , 1989 .

[43]  F. Gonseth,et al.  DIE LOGIK NICHT GLEICHZEITIG ENTSCHEIDBARER AUSSAGEN , 1990 .

[44]  K. Svozil Staging quantum cryptography with chocolate balls , 2005, physics/0510050.

[45]  A. Cabello Experimentally testable state-independent quantum contextuality. , 2008, Physical review letters.

[46]  Mirko Navara,et al.  The Pasting Constructions for Orthomodular Posets , 1991 .

[47]  Alex Biryukov,et al.  Fast Software Encryption: 14th International Workshop, FSE 2007, Luxembourg, Luxembourg, March 26-28, 2007, Revised Selected Papers , 2007, FSE 2007.

[48]  K. Svozil The quantum coin toss-testing microphysical undecidability , 1990 .

[49]  Fibirova Jana,et al.  Profit-Sharing – A Tool for Improving Productivity, Profitability and Competitiveness of Firms? , 2013 .

[50]  Cristian S. Calude,et al.  Strong Kochen-Specker theorem and incomputability of quantum randomness , 2012, Physical Review A.

[51]  Zweiwertige Wahrscheinlichkeitsfunktionen auf orthokomplementären Verbänden , 1965 .

[52]  Karl Svozil,et al.  How much contextuality? , 2011, Natural Computing.

[53]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[54]  J. Neumann Mathematical Foundations of Quantum Mechanics , 1955 .

[55]  N. Gisin,et al.  Optical quantum random number generator , 1999, quant-ph/9907006.

[56]  Karl Svozil,et al.  Quantum Logic , 1998, Discrete mathematics and theoretical computer science.

[57]  E. Specker DIE LOGIK NICHT GLEICHZEITIG ENTSC HEIDBARER AUSSAGEN , 1960 .

[58]  K. Svozil Noncontextuality in multipartite entanglement , 2004, quant-ph/0401113.

[59]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[60]  Ron Wright Generalized urn models , 1990 .

[61]  P. Elias The Efficient Construction of an Unbiased Random Sequence , 1972 .

[62]  E. Specker,et al.  The Problem of Hidden Variables in Quantum Mechanics , 1967 .

[63]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[64]  Sylvia Pulmannová,et al.  Orthomodular structures as quantum logics , 1991 .

[65]  Cristian S. Calude,et al.  Value-indefinite observables are almost everywhere , 2013, 1309.7188.

[66]  Karl Svozil,et al.  Three criteria for quantum random-number generators based on beam splitters , 2009, 0903.2744.

[67]  O. Gühne,et al.  State-independent experimental test of quantum contextuality , 2009, Nature.

[68]  Markus Dichtl Bad and Good Ways of Post-processing Biased Physical Random Numbers , 2007, FSE.

[69]  I. Pitowsky Infinite and finite Gleason’s theorems and the logic of indeterminacy , 1998 .

[70]  Staging quantum cryptography with chocolate ballsa ... , 2006 .

[71]  Stefano Pironio,et al.  Random numbers certified by Bell’s theorem , 2009, Nature.

[72]  Gilles Brassard,et al.  Experimental Quantum Cryptography , 1990, EUROCRYPT.

[73]  A. Peres Unperformed experiments have no results , 1978 .

[74]  H. Weinfurter,et al.  Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement , 2000, Nature.

[75]  M. Redhead,et al.  Incompleteness, Nonlocality, and Realism: A Prolegomenon to thePhilosophy of Quantum Mechanics , 1989 .

[76]  R. Landauer Information is physical , 1991 .

[77]  J. Bell On the Problem of Hidden Variables in Quantum Mechanics , 1966 .