Tools for Label-free Peptide Quantification

The increasing scale and complexity of quantitative proteomics studies complicate subsequent analysis of the acquired data. Untargeted label-free quantification, based either on feature intensities or on spectral counting, is a method that scales particularly well with respect to the number of samples. It is thus an excellent alternative to labeling techniques. In order to profit from this scalability, however, data analysis has to cope with large amounts of data, process them automatically, and do a thorough statistical analysis in order to achieve reliable results. We review the state of the art with respect to computational tools for label-free quantification in untargeted proteomics. The two fundamental approaches are feature-based quantification, relying on the summed-up mass spectrometric intensity of peptides, and spectral counting, which relies on the number of MS/MS spectra acquired for a certain protein. We review the current algorithmic approaches underlying some widely used software packages and briefly discuss the statistical strategies for analyzing the data.

[1]  Jeroen Krijgsveld,et al.  Metabolic labeling of C. elegans and D. melanogaster for quantitative proteomics , 2003, Nature Biotechnology.

[2]  Hua Tang,et al.  Normalization Regarding Non-Random Missing Values in High-Throughput Mass Spectrometry Data , 2005, Pacific Symposium on Biocomputing.

[3]  Paul C Guest,et al.  Analysis of the human pituitary proteome by data independent label‐free liquid chromatography tandem mass spectrometry , 2011, Proteomics.

[4]  Jens M. Rick,et al.  Quantitative mass spectrometry in proteomics: a critical review , 2007, Analytical and bioanalytical chemistry.

[5]  Igor Jurisica,et al.  Integrated proteomic and transcriptomic profiling of mouse lung development and Nmyc target genes , 2007, Molecular systems biology.

[6]  M. Mann,et al.  Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks , 2006, Cell.

[7]  Ning Zhang,et al.  Corra: Computational framework and tools for LC-MS discovery and targeted mass spectrometry-based proteomics , 2008, BMC Bioinformatics.

[8]  Andrew H. Thompson,et al.  Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. , 2003, Analytical chemistry.

[9]  Benno Schwikowski,et al.  Alignment of LC‐MS images, with applications to biomarker discovery and protein identification , 2008, Proteomics.

[10]  R. Aebersold,et al.  Mass spectrometry-based proteomics , 2003, Nature.

[11]  B. Kuster,et al.  Proteomics: a pragmatic perspective , 2010, Nature Biotechnology.

[12]  Matej Oresic,et al.  MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data , 2010, BMC Bioinformatics.

[13]  E. Marcotte,et al.  Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation , 2007, Nature Biotechnology.

[14]  Milos V Novotny,et al.  Glycomic and Proteomic Profiling of Pancreatic Cyst Fluids Identifies Hyperfucosylated Lactosamines on the N-linked Glycans of Overexpressed Glycoproteins* , 2012, Molecular & Cellular Proteomics.

[15]  B. Usadel,et al.  Quantitation in mass-spectrometry-based proteomics. , 2010, Annual review of plant biology.

[16]  Kenji Inoue,et al.  The Proteomic Profile of Circulating Pentraxin 3 (PTX3) Complex in Sepsis Demonstrates the Interaction with Azurocidin 1 and Other Components of Neutrophil Extracellular Traps , 2012, Molecular & Cellular Proteomics.

[17]  Linfeng Wu,et al.  Role of spectral counting in quantitative proteomics , 2010, Expert review of proteomics.

[18]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[19]  Knut Reinert,et al.  OpenMS – An open-source software framework for mass spectrometry , 2008, BMC Bioinformatics.

[20]  S. Gygi,et al.  Quantitative analysis of complex protein mixtures using isotope-coded affinity tags , 1999, Nature Biotechnology.

[21]  Zhongqi Zhang,et al.  Retention Time Alignment of LC/MS Data by a Divide-and-Conquer Algorithm , 2012, Journal of The American Society for Mass Spectrometry.

[22]  Per E. Andrén,et al.  Development and Evaluation of Normalization Methods for Label-free Relative Quantification of Endogenous Peptides* , 2009, Molecular & Cellular Proteomics.

[23]  Knut Reinert,et al.  TOPP - the OpenMS proteomics pipeline , 2007, Bioinform..

[24]  J. Listgarten,et al.  Statistical and Computational Methods for Comparative Proteomic Profiling Using Liquid Chromatography-Tandem Mass Spectrometry , 2005, Molecular & Cellular Proteomics.

[25]  K. Gevaert,et al.  RIBAR and xRIBAR: Methods for reproducible relative MS/MS-based label-free protein quantification. , 2011, Journal of proteome research.

[26]  Lukas N. Mueller,et al.  SuperHirn – a novel tool for high resolution LC‐MS‐based peptide/protein profiling , 2007, Proteomics.

[27]  M. Mann,et al.  Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics* , 2002, Molecular & Cellular Proteomics.

[28]  Ruedi Aebersold,et al.  A Serum Protein Profile Predictive of the Resistance to Neoadjuvant Chemotherapy in Advanced Breast Cancers* , 2011, Molecular & Cellular Proteomics.

[29]  J. Yates,et al.  Proteomics of organelles and large cellular structures , 2005, Nature Reviews Molecular Cell Biology.

[30]  R. Aebersold,et al.  Applying mass spectrometry-based proteomics to genetics, genomics and network biology , 2009, Nature Reviews Genetics.

[31]  Robert Burke,et al.  ProteoWizard: open source software for rapid proteomics tools development , 2008, Bioinform..

[32]  Tim W. Nattkemper,et al.  Peak intensity prediction in MALDI-TOF mass spectrometry: A machine learning study to support quantitative proteomics , 2008, BMC Bioinformatics.

[33]  Martin Kircher,et al.  Deep proteome and transcriptome mapping of a human cancer cell line , 2011, Molecular systems biology.

[34]  Lukas N. Mueller,et al.  An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data. , 2008, Journal of proteome research.

[35]  Bernhard Kuster,et al.  Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors , 2007, Nature Biotechnology.

[36]  A. Heck,et al.  The quantitative proteomes of human-induced pluripotent stem cells and embryonic stem cells , 2011, Molecular systems biology.

[37]  Steffen Neumann,et al.  Critical assessment of alignment procedures for LC-MS proteomics and metabolomics measurements , 2008, BMC Bioinformatics.

[38]  M. Mann,et al.  Mass spectrometry–based proteomics turns quantitative , 2005, Nature chemical biology.

[39]  M. Mann,et al.  Exponentially Modified Protein Abundance Index (emPAI) for Estimation of Absolute Protein Amount in Proteomics by the Number of Sequenced Peptides per Protein*S , 2005, Molecular & Cellular Proteomics.

[40]  J. Ellenberg,et al.  The quantitative proteome of a human cell line , 2011, Molecular systems biology.

[41]  Knut Reinert,et al.  Absolute myoglobin quantitation in serum by combining two-dimensional liquid chromatography-electrospray ionization mass spectrometry and novel data analysis algorithms. , 2006, Journal of proteome research.

[42]  Stephen J. Callister,et al.  Normalization approaches for removing systematic biases associated with mass spectrometry and label-free proteomics. , 2006, Journal of proteome research.

[43]  Julian Mintseris,et al.  A Protein Complex Network of Drosophila melanogaster , 2011, Cell.

[44]  M. Selbach,et al.  Global quantification of mammalian gene expression control , 2011, Nature.

[45]  A. Nesvizhskii,et al.  Comparative analysis of different label-free mass spectrometry based protein abundance estimates and their correlation with RNA-Seq gene expression data. , 2012, Journal of proteome research.

[46]  Pei Wang,et al.  Bioinformatics Original Paper a Suite of Algorithms for the Comprehensive Analysis of Complex Protein Mixtures Using High-resolution Lc-ms , 2022 .

[47]  Knut Reinert,et al.  A geometric approach for the alignment of liquid chromatography - mass spectrometry data , 2007, ISMB/ECCB.

[48]  Mona Singh,et al.  Protein quantification across hundreds of experimental conditions , 2009, Proceedings of the National Academy of Sciences.

[49]  Matthias Mann,et al.  Bioinformatics analysis of mass spectrometry‐based proteomics data sets , 2009, FEBS letters.

[50]  Rainer Breitling,et al.  msCompare: A Framework for Quantitative Analysis of Label-free LC-MS Data for Comparative Candidate Biomarker Studies* , 2012, Molecular & Cellular Proteomics.

[51]  A. Schmidt,et al.  A novel strategy for quantitative proteomics using isotope‐coded protein labels , 2005, Proteomics.

[52]  Jeffrey T.-J. Huang,et al.  Evaluation for computational platforms of LC-MS based label-free quantitative proteomics: A global view , 2010 .

[53]  Antoine H P America,et al.  Comparative LC‐MS: A landscape of peaks and valleys , 2008, Proteomics.

[54]  M. Mann,et al.  Large-scale Proteomic Analysis of the Human Spliceosome References , 2006 .

[55]  M. Mann,et al.  Quantitative, high-resolution proteomics for data-driven systems biology. , 2011, Annual review of biochemistry.

[56]  Sung Kyu Park,et al.  A quantitative analysis software tool for mass spectrometry–based proteomics , 2008, Nature Methods.

[57]  Olga Vitek,et al.  Computational Mass Spectrometry–Based Proteomics , 2011, PLoS Comput. Biol..

[58]  Navdeep Jaitly,et al.  VIPER: an advanced software package to support high-throughput LC-MS peptide identification , 2007, Bioinform..

[59]  L Pattini,et al.  MassUntangler: a novel alignment tool for label-free liquid chromatography-mass spectrometry proteomic data. , 2011, Journal of chromatography. A.

[60]  K. Parker,et al.  Multiplexed Protein Quantitation in Saccharomyces cerevisiae Using Amine-reactive Isobaric Tagging Reagents*S , 2004, Molecular & Cellular Proteomics.

[61]  Michael K. Coleman,et al.  Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. , 2006, Journal of proteome research.