Sharp kernel estimates for elliptic operators with second-order discontinuous coefficients
暂无分享,去创建一个
[1] G. Metafune,et al. Scale invariant elliptic operators with singular coefficients , 2014, 1405.5657.
[2] H. Kovařík. Heat kernels of two-dimensional magnetic Schrödinger and Pauli operators , 2012 .
[3] A. Tesei,et al. Parabolic Harnack inequality for the heat equation with inverse-square potential , 2007 .
[4] A. Tertikas,et al. Sharp Two–Sided Heat Kernel Estimates for Critical Schrödinger Operators on Bounded Domains , 2006, math/0606151.
[5] P. Manselli,et al. Spectral analysis for a discontinuous second order elliptic operator , 2005 .
[6] P. Milman,et al. Global heat kernel bounds via desingularizing weights , 2004 .
[7] David E. Edmunds,et al. Spectral Theory and Differential Operators , 1987, Oxford Scholarship Online.
[8] P. Manselli. Su un operatore ellittico a coefficienti discontinui , 1973 .
[9] E. Stein,et al. Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .
[10] N. Vilenkin. Special Functions and the Theory of Group Representations , 1968 .
[11] C. Pucci. Operatori ellittici estremanti , 1966 .
[12] G. Metafune,et al. Kernel estimates for elliptic operators with second-order discontinuous coefficients , 2017 .
[13] G. Metafune,et al. Non-uniqueness for second order elliptic operators , 2016 .
[14] Jerome A. Goldstein,et al. THE HEAT EQUATION WITH A SINGULAR POTENTIAL , 1984 .
[15] El-maati Ouhabaz: Analysis of Heat Equations on Domains , 2022 .