Evolution of phototransduction, vertebrate photoreceptors and retina

Evidence is reviewed from a wide range of studies relevant to the evolution of vertebrate photoreceptors and phototransduction, in order to permit the synthesis of a scenario for the major steps that occurred during the evolution of cones, rods and the vertebrate retina. The ancestral opsin originated more than 700 Mya (million years ago) and duplicated to form three branches before cnidarians diverged from our own lineage. During chordate evolution, ciliary opsins (C-opsins) underwent multiple stages of improvement, giving rise to the 'bleaching' opsins that characterise cones and rods. Prior to the '2R' rounds of whole genome duplication near the base of the vertebrate lineage, 'cone' photoreceptors already existed; they possessed a transduction cascade essentially the same as in modern cones, along with two classes of opsin: SWS and LWS (short- and long-wave-sensitive). These cones appear to have made synaptic contact directly onto ganglion cells, in a two-layered retina that resembled the pineal organ of extant non-mammalian vertebrates. Interestingly, those ganglion cells appear to be descendants of microvillar photoreceptor cells. No lens was associated with this two-layered retina, and it is likely to have mediated circadian timing rather than spatial vision. Subsequently, retinal bipolar cells evolved, as variants of ciliary photoreceptors, and greatly increased the computational power of the retina. With the advent of a lens and extraocular muscles, spatial imaging information became available for central processing, and gave rise to vision in vertebrates more than 500 Mya. The '2R' genome duplications permitted the refinement of cascade components suitable for both rods and cones, and also led to the emergence of five visual opsins. The exact timing of the emergence of 'true rods' is not yet clear, but it may not have occurred until after the divergence of jawed and jawless vertebrates.

[1]  Felix Carbonell,et al.  Reconstruction of rat retinal progenitor cell lineages in vitro reveals a surprising degree of stochasticity in cell fate decisions , 2011, Development.

[2]  R. Foster,et al.  Immunocytochemical identification of photoreceptor proteins in hypothalamic cerebrospinal fluid-contacting neurons of the larval lamprey (Petromyzon marinus) , 1994, Cell and Tissue Research.

[3]  Lorenzo Cangiano,et al.  The photovoltage of rods and cones in the dark‐adapted mouse retina , 2012, The Journal of physiology.

[4]  E N Pugh,et al.  A quantitative account of the activation steps involved in phototransduction in amphibian photoreceptors. , 1992, The Journal of physiology.

[5]  S. Kawamura,et al.  Low Activation and Fast Inactivation of Transducin in Carp Cones* , 2012, The Journal of Biological Chemistry.

[6]  T. Lamb,et al.  Light adaptation and dark adaptation of human rod photoreceptors measured from the a‐wave of the electroretinogram , 1999, The Journal of physiology.

[7]  J. Vanfleteren,et al.  Photoreceptor evolution and phylogeny , 2009 .

[8]  H. L. Schulz,et al.  The Retinome – Defining a reference transcriptome of the adult mammalian retina/retinal pigment epithelium , 2004, BMC Genomics.

[9]  F. Jacob,et al.  Evolution and tinkering. , 1977, Science.

[10]  Gavin Young Early Evolution of the Vertebrate Eye—Fossil Evidence , 2008, Evolution: Education and Outreach.

[11]  Antje Meves Elektronenmikroskopische Untersuchungen über die Zytoarchitektur des Gehirns vonBranchiostoma lanceolatum , 1973, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[12]  George Adelman,et al.  Encyclopedia of neuroscience , 2004 .

[13]  T. Lamb,et al.  Recovery of the human photopic electroretinogram after bleaching exposures: estimation of pigment regeneration kinetics , 2004, The Journal of physiology.

[14]  S. Hecht,et al.  ENERGY, QUANTA, AND VISION , 1942, The Journal of general physiology.

[15]  J. C. Saari Vitamin A metabolism in rod and cone visual cycles. , 2012, Annual review of nutrition.

[16]  Bernd Fritzsch,et al.  Dendritic distribution of two populations of ganglion cells and the retinopetal fibers in the retina of the silver lamprey (Ichthyomyzon unicuspis) , 1990, Visual Neuroscience.

[17]  Todd H. Oakley,et al.  The Origins of Novel Protein Interactions during Animal Opsin Evolution , 2007, PloS one.

[18]  W. Gehring,et al.  Evolution and Functional Diversity of Jellyfish Opsins , 2008, Current Biology.

[19]  T. Lacalli,et al.  New perspectives on the evolution of protochordate sensory and locomotory systems, and the origin of brains and heads. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[20]  H. Meissl,et al.  Neural response mechanisms in the photoreceptive pineal organ of goldfish. , 1986, Comparative biochemistry and physiology. A, Comparative physiology.

[21]  Bernd Fritzsch ONTOGENETIC CLUES TO THE PHYLOGENY OF THE VISUAL SYSTEM , 1991 .

[22]  J. V. van Hateren,et al.  The photocurrent response of human cones is fast and monophasic , 2006, BMC Neuroscience.

[23]  G Falk,et al.  Responses of rod‐bipolar cells in the dark‐adapted retina of the dogfish, Scyliorhinus canicula , 1980, The Journal of physiology.

[24]  A. Quesada,et al.  Morphological and structural study of Landolt's club in the chick retina , 1985, Journal of morphology.

[25]  Jianzhi Zhang Evolution by gene duplication: an update , 2003 .

[26]  J. McInerney,et al.  Molecular evidence for dim-light vision in the last common ancestor of the vertebrates , 2006, Current Biology.

[27]  M. Sanders Handbook of Sensory Physiology , 1975 .

[28]  Vladimir J. Kefalov,et al.  The Cone-specific visual cycle , 2011, Progress in Retinal and Eye Research.

[29]  A. Swaroop,et al.  Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina , 2010, Nature Reviews Neuroscience.

[30]  R. Anadón,et al.  Some considerations on the fine structure of rhabdomeric photoreceptors in the amphioxus, Branchiostoma lanceolatum (Cephalochordata). , 1991, Journal fur Hirnforschung.

[31]  Fred Rieke,et al.  Origin and Functional Impact of Dark Noise in Retinal Cones , 2000, Neuron.

[32]  F. Tokunaga,et al.  Molecular evolution of proteins involved in vertebrate phototransduction. , 2002, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[33]  Á. Szél,et al.  The pineal organ as a folded retina: immunocytochemical localization of opsins. , 1998, Biology of the cell.

[34]  E. Mayr,et al.  On the evolution of photoreceptors and eyes , 1977 .

[35]  A. Terakita,et al.  Diversity and functional properties of bistable pigments , 2010, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[36]  T. Adachi,et al.  Self-organizing optic-cup morphogenesis in three-dimensional culture , 2011, Nature.

[37]  D. Nilsson,et al.  A pessimistic estimate of the time required for an eye to evolve , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[38]  R. Anadón,et al.  The fine structure of lamellate cells in the brain of amphioxus (Branchiostoma lanceolatum, Cephalochordata) , 1991, Cell and Tissue Research.

[39]  Barry E Knox,et al.  Rapid release of retinal from a cone visual pigment following photoactivation. , 2012, Biochemistry.

[40]  R. M. Eakin,et al.  Ultrastructure of sensory receptors in ascidian tadpoles , 1970, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[41]  B. Burke,et al.  Where Can I Find out More? , 2022 .

[42]  A. Terakita,et al.  Beta-Arrestin Functionally Regulates the Non-Bleaching Pigment Parapinopsin in Lamprey Pineal , 2011, PloS one.

[43]  Heinz Wässle,et al.  Parallel processing in the mammalian retina , 2004, Nature Reviews Neuroscience.

[44]  G. Edgecombe,et al.  Acute vision in the giant Cambrian predator Anomalocaris and the origin of compound eyes , 2011, Nature.

[45]  D. Tranchina,et al.  Multiple Steps of Phosphorylation of Activated Rhodopsin Can Account for the Reproducibility of Vertebrate Rod Single-photon Responses , 2003, The Journal of general physiology.

[46]  D. H. Rapaport,et al.  Defining retinal progenitor cell competence in Xenopus laevis by clonal analysis , 2009, Development.

[47]  Todd H. Oakley,et al.  The evolution of phototransduction from an ancestral cyclic nucleotide gated pathway , 2010, Proceedings of the Royal Society B: Biological Sciences.

[48]  D. Oprian,et al.  Identification of the Cl(-)-binding site in the human red and green color vision pigments. , 1993, Biochemistry.

[49]  R. Albalat Evolution of the genetic machinery of the visual cycle: a novelty of the vertebrate eye? , 2012, Molecular biology and evolution.

[50]  Oliver P. Ernst,et al.  Crystal structure of opsin in its G-protein-interacting conformation , 2008, Nature.

[51]  L Mahadevan,et al.  A dynamic fate map of the forebrain shows how vertebrate eyes form and explains two causes of cyclopia , 2006, Development.

[52]  J. A. Westfall,et al.  FURTHER OBSERVATIONS ON THE FINE STRUCTURE OF THE PARIETAL EYE OF LIZARDS , 1960, The Journal of Biophysical and Biochemical Cytology.

[53]  N. Artemyev,et al.  Determinants for phosphodiesterase 6 inhibition by its gamma-subunit. , 2010, Biochemistry.

[54]  D. A. Burkhardt,et al.  Light adaptation and photopigment bleaching in cone photoreceptors in situ in the retina of the turtle , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[55]  K. Yau,et al.  Photochemical nature of parietopsin. , 2012, Biochemistry.

[56]  P. Mcnaughton,et al.  Calcium homeostasis in the outer segments of retinal rods from the tiger salamander. , 1992, The Journal of physiology.

[57]  D. Dickson,et al.  Fine structure of the lamprey photoreceptors and retinal pigment epithelium (Petromyzon marinus L.). , 1979, Experimental eye research.

[58]  T. Wensel Signal transducing membrane complexes of photoreceptor outer segments , 2008, Vision Research.

[59]  T. Lamb,et al.  The relation between intercellular coupling and electrical noise in turtle photoreceptors. , 1976, The Journal of physiology.

[60]  Steven Nusinowitz,et al.  Identification of DES1 as a Vitamin A Isomerase in Müller Glial Cells of the Retina , 2012, Nature chemical biology.

[61]  W. S. Stiles Mechanisms of colour vision : selected papers of W.S. Stiles ; with a new introductory essay , 1978 .

[62]  K. Donner,et al.  On the relation between the photoactivation energy and the absorbance spectrum of visual pigments , 2004, Vision Research.

[63]  M. A. Raven,et al.  Disruption of transient photoreceptor targeting within the inner plexiform layer following early ablation of cholinergic amacrine cells in the ferret , 2001, Visual Neuroscience.

[64]  D. Nilsson,et al.  Eye evolution and its functional basis , 2013, Visual Neuroscience.

[65]  V. Govardovskii,et al.  Late stages of visual pigment photolysis in situ: Cones vs. rods , 2006, Vision Research.

[66]  M. Eiraku,et al.  Self-organizing optic-cup morphogenesis in three-dimensional culture , 2011, Neuroscience Research.

[67]  J. Dowling The Retina: An Approachable Part of the Brain , 1988 .

[68]  E. Strettoi,et al.  Synaptic connections of rod bipolar cells in the inner plexiform layer of the rabbit retina , 1990, The Journal of comparative neurology.

[69]  Akihisa Terakita,et al.  The opsins , 2005, Genome Biology.

[70]  T. Wensel,et al.  Tokay Gecko Photoreceptors Achieve Rod-Like Physiology with Cone-Like Proteins† , 2006, Photochemistry and photobiology.

[71]  P. Marchiafava,et al.  Photoresponses and light adaptation of pineal photoreceptors in the trout , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[72]  D. Arendt Evolution of eyes and photoreceptor cell types. , 2003, The International journal of developmental biology.

[73]  J. L. Schnapf,et al.  The Photovoltage of Macaque Cone Photoreceptors: Adaptation, Noise, and Kinetics , 1999, The Journal of Neuroscience.

[74]  R. Foster,et al.  Vertebrate ancient opsin and melanopsin: divergent irradiance detectors , 2010, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[75]  Marie E Burns,et al.  Calcium feedback to cGMP synthesis strongly attenuates single-photon responses driven by long rhodopsin lifetimes. , 2012, Neuron.

[76]  K. Holmberg The Cyclostome Retina , 1977 .

[77]  R. Gadagkar Nothing in Biology Makes Sense Except in the Light of Evolution , 2005 .

[78]  Disc morphogenesis in vertebrate photoreceptors , 1980 .

[79]  W. Harris,et al.  From progenitors to differentiated cells in the vertebrate retina. , 2009, Annual review of cell and developmental biology.

[80]  T. Lamb,et al.  Visual transduction by rod and cone photoreceptors , 2004 .

[81]  Roger C. Hardie,et al.  Photomechanical Responses in Drosophila Photoreceptors , 2012, Science.

[82]  Hisao Tsukamoto,et al.  Cephalochordate Melanopsin: Evolutionary Linkage between Invertebrate Visual Cells and Vertebrate Photosensitive Retinal Ganglion Cells , 2005, Current Biology.

[83]  Satoru Kawamura,et al.  Rod and cone photoreceptors: molecular basis of the difference in their physiology. , 2008, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[84]  T. Bullock,et al.  Evolution of myelin sheaths: Both lamprey and hagfish lack myelin , 1984, Neuroscience Letters.

[85]  Gavin Young Number and arrangement of extraocular muscles in primitive gnathostomes: evidence from extinct placoderm fishes , 2008, Biology Letters.

[86]  Detlev Arendt,et al.  The ‘division of labour’ model of eye evolution , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[87]  B. Vígh,et al.  Cytochemistry of CSF-contacting neurons and pinealocytes. , 1992, Progress in brain research.

[88]  R. M. Eakin,et al.  Evolution of photoreceptors. , 1965, Cold Spring Harbor symposia on quantitative biology.

[89]  Samer Hattar,et al.  Central projections of melanopsin‐expressing retinal ganglion cells in the mouse , 2006, The Journal of comparative neurology.

[90]  K. Rubinson The developing visual system and metamorphosis in the lamprey. , 1990, Journal of neurobiology.

[91]  Gordon L. Fain,et al.  Phototransduction and the Evolution of Photoreceptors , 2010, Current Biology.

[92]  D. Larhammar,et al.  Evolution of vertebrate rod and cone phototransduction genes , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[93]  Proctor Lecture,et al.  Phototransduction, Dark Adaptation, and Rhodopsin Regeneration , 2006 .

[94]  N. Lane,et al.  Evolution of cerebral vesicles and their sensory organs in an ascidian larva , 2001 .

[95]  Y. Fukada,et al.  Chimeric nature of pinopsin between rod and cone visual pigments. , 1999, Biochemistry.

[96]  E. Dodt The Parietal Eye (Pineal and Parietal Organs) of Lower Vertebrates , 1973 .

[97]  P. Scheerer,et al.  A G protein-coupled receptor at work: the rhodopsin model. , 2009, Trends in biochemical sciences.

[98]  Juan M. Angueyra,et al.  Light-transduction in melanopsin-expressing photoreceptors of Amphioxus , 2009, Proceedings of the National Academy of Sciences.

[99]  A. Mushegian,et al.  The Origin and Evolution of G Protein-Coupled Receptor Kinases , 2012, PloS one.

[100]  G. L. Walls The Reptilian Retina , 1934 .

[101]  Cestmir Vlcek,et al.  Assembly of the cnidarian camera-type eye from vertebrate-like components , 2008, Proceedings of the National Academy of Sciences.

[102]  D. Arendt,et al.  Reconstructing the eyes of Urbilateria. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[103]  Y. Shichida,et al.  Multiple functions of Schiff base counterion in rhodopsins , 2010, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[104]  C. Tyler,et al.  Analysis of visual modulation sensitivity. IV. Validity of the Ferry-Porter law. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[105]  Richard Cowper-Sal·lari,et al.  microRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate , 2010, Proceedings of the National Academy of Sciences.

[106]  P. Detwiler,et al.  Visual transduction in dialysed detached rod outer segments from lizard retina. , 1993, The Journal of physiology.

[107]  D. Dickson,et al.  Retinal development in the lamprey (Petromyzon marinus L.): premetamorphic ammocoete eye. , 1979, The American journal of anatomy.

[108]  J. Dowling,et al.  Intracellular recordings from gecko photoreceptors during light and dark adaptation , 1975, The Journal of general physiology.

[109]  Tao Wang,et al.  Requirement for an Enzymatic Visual Cycle in Drosophila , 2010, Current Biology.

[110]  Davide Pisani,et al.  Metazoan opsin evolution reveals a simple route to animal vision , 2012, Proceedings of the National Academy of Sciences.

[111]  A. Butler,et al.  Chordate evolution and the origin of craniates: An old brain in a new head , 2000, The Anatomical record.

[112]  H. Kobayashi On the photo-perceptive function in the eye of the hagfish,Myxine garmani Jordan et Snyder. , 1964 .

[113]  T. Lamb,et al.  Extremely rapid recovery of human cone circulating current at the extinction of bleaching exposures , 2005, The Journal of physiology.

[114]  T. Lamb,et al.  The Origin of the Vertebrate Eye , 2008, Evolution: Education and Outreach.

[115]  Shigehiro Kuraku,et al.  Hagfish embryology with reference to the evolution of the neural crest , 2007, Nature.

[116]  K. Holmberg The hagfish retina: Electron microscopic study comparing receptor and epithelial cells in the pacific hagfish, Polistotrema stouti, with those in the atlantic hagfish, Myxine glutinosa , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[117]  D. Larhammar,et al.  Expansion of transducin subunit gene families in early vertebrate tetraploidizations. , 2012, Genomics.

[118]  C. Murphy,et al.  Comparative retinal morphology of the platypus , 2011, Journal of morphology.

[119]  K. Holmberg,et al.  The eyes in three genera of hagfish (Eptatretus, paramyxine andMyxine)—A case of degenerative evolution , 1975, Vision Research.

[120]  Toshiyuki Okano,et al.  Pinopsin is a chicken pineal photoreceptive molecule , 1994, Nature.

[121]  María del Pilar Gomez,et al.  Dissecting the Determinants of Light Sensitivity in Amphioxus Microvillar Photoreceptors: Possible Evolutionary Implications for Melanopsin Signaling , 2012, The Journal of Neuroscience.

[122]  M. Sullivan,et al.  Type IIn supernovae at redshift z ≈ 2 from archival data , 2009, Nature.

[123]  Z. Kozmík,et al.  Eye evolution: common use and independent recruitment of genetic components , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[124]  E. Raviola,et al.  Intramembrane organization of specialized contacts in the outer plexiform layer of the retina. A freeze-fracture study in monkeys and rabbits , 1975, The Journal of cell biology.

[125]  D. Hunt,et al.  Retinal Amino Acid Neurochemistry of the Southern Hemisphere Lamprey, Geotria australis , 2013, PloS one.

[126]  C. V. Kupffe Zur Kopfentwicklung von Bdellostoma , 2022 .

[127]  M. Lavail,et al.  Timing and topography of cell genesis in the rat retina , 2004, The Journal of comparative neurology.

[128]  V. Gurevich,et al.  The functional cycle of visual arrestins in photoreceptor cells , 2011, Progress in Retinal and Eye Research.

[129]  G. L. Walls,et al.  The Vertebrate Eye and Its Adaptive Radiation , 1943 .

[130]  H. Ohuchi,et al.  Vertebrate ancient-long opsin has molecular properties intermediate between those of vertebrate and invertebrate visual pigments. , 2011, Biochemistry.

[131]  J. Cerdà,et al.  Evolution and Functional Diversity of Aquaporins , 2015, The Biological Bulletin.

[132]  T. Lamb,et al.  Ectopic expression of cone‐specific G‐protein‐coupled receptor kinase GRK7 in zebrafish rods leads to lower photosensitivity and altered responses , 2011, The Journal of physiology.

[133]  E. Pugh,et al.  Calcium Feedback to cGMP Synthesis Strongly Attenuates Single-Photon Responses Driven by Long Rhodopsin Lifetimes , 2013, Neuron.

[134]  S C Nicholas,et al.  Toward a unified model of vertebrate rod phototransduction. , 2005, Visual neuroscience.

[135]  D. Erwin,et al.  The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals , 2011, Science.

[136]  K. Rubinson,et al.  Neural differentiation in the retina of the larval sea lamprey (Petromyzon marinus) , 1989, Visual Neuroscience.

[137]  D. Pease,et al.  The electron microscopy of the lamprey spinal cord , 1956 .

[138]  T. Lamb,et al.  Analysis of electrical noise in turtle cones , 1977, The Journal of physiology.

[139]  E. Strettoi,et al.  Synaptic connections of the narrow‐field, bistratified rod amacrine cell (AII) in the rabbit retina , 1992, The Journal of comparative neurology.

[140]  D. Newth,et al.  On the Reaction to Light of Myxine Glutinosa L , 1955 .

[141]  Livia S. Carvalho,et al.  The FASEB Journal • Research Communication Functional characterization, tuning, and regulation , 2022 .

[142]  C. Darwin On the Origin of Species by Means of Natural Selection: Or, The Preservation of Favoured Races in the Struggle for Life , 2019 .

[143]  D. Hunt,et al.  Anion sensitivity and spectral tuning of middle- and long-wavelength-sensitive (MWS/LWS) visual pigments , 2012, Cellular and Molecular Life Sciences.

[144]  M. Blumer Alterations of the eyes during ontogenesis inAporrhais pespelecani (Mollusca, Caenogastropoda) , 1996, Zoomorphology.

[145]  Massimo Olivucci,et al.  The Molecular Mechanism of Thermal Noise in Rod Photoreceptors , 2012, Science.

[146]  P. Lewis A theoretical interpretation of spectral sensitivity curves at long wavelengths , 1955, The Journal of physiology.

[147]  B. Reese,et al.  Rods and cones project to the inner plexiform layer during development , 1999, The Journal of comparative neurology.

[148]  Joseph C. Besharse,et al.  Encyclopedia of the eye , 2010 .

[149]  A. Terakita,et al.  The Magnitude of the Light-induced Conformational Change in Different Rhodopsins Correlates with Their Ability to Activate G Proteins* , 2009, The Journal of Biological Chemistry.

[150]  Kosuke Takano,et al.  Jellyfish vision starts with cAMP signaling mediated by opsin-Gs cascade , 2008, Proceedings of the National Academy of Sciences.

[151]  Oliver P. Ernst,et al.  Crystal structure of metarhodopsin II , 2011, Nature.

[152]  T. Kusakabe,et al.  Evolution and the origin of the visual retinoid cycle in vertebrates , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[153]  Gordon L. Fain,et al.  ATP Consumption by Mammalian Rod Photoreceptors in Darkness and in Light , 2008, Current Biology.

[154]  Á. Szél,et al.  Review Nonvisual photoreceptors of the deep brain, pineal organs and retina , 2022 .

[155]  T. Lacalli,et al.  Sensory Systems in Amphioxus: A Window on the Ancestral Chordate Condition , 2004, Brain, Behavior and Evolution.

[156]  H. Barlow,et al.  Purkinje Shift and Retinal Noise , 1957, Nature.

[157]  S. Collin Early evolution of vertebrate photoreception: lessons from lampreys and lungfishes. , 2009, Integrative zoology.

[158]  N. Artemyev,et al.  Rod phosphodiesterase-6 PDE6A and PDE6B Subunits Are Enzymatically Equivalent* , 2010, The Journal of Biological Chemistry.

[159]  T. Lamb Evolution of vertebrate retinal photoreception , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[160]  C. Chien,et al.  A complex choreography of cell movements shapes the vertebrate eye , 2012, Development.

[161]  T. Horie,et al.  Origin of the Vertebrate Visual Cycle: III. Distinct Distribution of RPE65 and β-carotene 15,15′-Monooxygenase Homologues in Ciona intestinalis† , 2006, Photochemistry and photobiology.

[162]  S. Grillner,et al.  Organization of the six motor nuclei innervating the ocular muscles in lamprey , 1990, The Journal of comparative neurology.

[163]  V. Gurevich,et al.  Arrestins: ubiquitous regulators of cellular signaling pathways , 2006, Genome Biology.

[164]  J. Dowling,et al.  Anatomical and physiological characteristics of pineal photoreceptor cell in the larval lamprey, Petromyzon marinus. , 1981, Journal of neurophysiology.

[165]  D M Hunt,et al.  The molecular basis for spectral tuning of rod visual pigments in deep-sea fish. , 2001, The Journal of experimental biology.

[166]  P. Mcnaughton,et al.  Spatial spread of activation and background desensitization in toad rod outer segments , 1981, The Journal of physiology.

[167]  A. Terakita,et al.  Bistable UV pigment in the lamprey pineal. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[168]  I. Potter,et al.  Morphology and spectral absorption characteristics of retinal photoreceptors in the southern hemisphere lamprey (Geotria australis) , 2003, Visual Neuroscience.

[169]  F. Werblin,et al.  Control of Retinal Sensitivity: I. Light and Dark Adaptation of Vertebrate Rods and Cones , 1974 .

[170]  Sabine Brauckmann Karl Ernst von Baer (1792-1876) and evolution. , 2012, The International journal of developmental biology.

[171]  H. Meissl,et al.  Intracellular staining of physiologically identified photoreceptor cells and hyperpolarizing interneurons in the teleost pineal organ , 1988, Neuroscience.

[172]  T. Lamb,et al.  Variability in the Time Course of Single Photon Responses from Toad Rods Termination of Rhodopsin’s Activity , 1999, Neuron.

[173]  T. Morizumi,et al.  Molecular properties of rod and cone visual pigments from purified chicken cone pigments to mouse rhodopsin in situ , 2005, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[174]  D. Hunt,et al.  The evolution of early vertebrate photoreceptors , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[175]  Glen T. Prusky,et al.  Melanopsin-Expressing Retinal Ganglion-Cell Photoreceptors: Cellular Diversity and Role in Pattern Vision , 2010, Neuron.

[176]  Shigang He,et al.  Intrinsically Photosensitive Retinal Ganglion Cells: Intrinsically Photosensitive Retinal Ganglion Cells , 2011 .

[177]  T. Goldsmith Evolutionary tinkering with visual photoreception , 2012, Visual Neuroscience.

[178]  B. Reese Developmental plasticity of photoreceptors. , 2004, Progress in brain research.

[179]  Masao Yoshida Some observations on the patency in the outer segments of photoreceptors of the nocturnal gecko , 1978, Vision Research.

[180]  H. Young,et al.  The rod circuit in the rabbit retina , 1991, Visual Neuroscience.

[181]  M. S. Almén,et al.  The Origin of GPCRs: Identification of Mammalian like Rhodopsin, Adhesion, Glutamate and Frizzled GPCRs in Fungi , 2012, PloS one.

[182]  R. W. Young Visual cells and the concept of renewal. , 1976, Investigative ophthalmology & visual science.

[183]  W. Hodos,et al.  Comparative Vertebrate Neuroanatomy: Evolution and Adaptation , 2005 .

[184]  Juan M. Angueyra,et al.  Melanopsin-Expressing Amphioxus Photoreceptors Transduce Light via a Phospholipase C Signaling Cascade , 2012, PloS one.

[185]  M. Tabata,et al.  Intracellular response and input resistance change of pineal photoreceptors and ganglion cells. , 1985, Neuroscience research. Supplement : the official journal of the Japan Neuroscience Society.

[186]  H. Ripps,et al.  Membrane current responses of skate photoreceptors , 1989, The Journal of general physiology.

[187]  I. Rogozin,et al.  Origin and Evolution of Retinoid Isomerization Machinery in Vertebrate Visual Cycle: Hint from Jawless Vertebrates , 2012, PloS one.

[188]  S. N. Barnes Fine structure of the photoreceptor and cerebral ganglion of the tadpole larva of Amaroucium constellatum (Verrill) (Subphylum: Urochordata; Class: Ascidiacea) , 2004, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[189]  G. Matthews Dark noise in the outer segment membrane current of green rod photoreceptors from toad retina. , 1984, The Journal of physiology.

[190]  Alexander S. Garruss,et al.  Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution , 2013, Nature Genetics.

[191]  T. Lamb,et al.  Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup , 2007, Nature Reviews Neuroscience.

[192]  A. Parker On the origin of optics , 2011 .

[193]  Thomas W Cronin,et al.  Shedding new light on opsin evolution , 2012, Proceedings of the Royal Society B: Biological Sciences.

[194]  T. Lamb Phototransduction: Adaptation in Cones , 2010 .

[195]  D. Dickson,et al.  Corneal splitting in the developing lamprey Petromyzon marinus L. eye. , 1982, The American journal of anatomy.

[196]  W. Harris,et al.  How Variable Clones Build an Invariant Retina , 2012, Neuron.

[197]  D. Larhammar,et al.  Extensive duplications of phototransduction genes in early vertebrate evolution correlate with block (chromosome) duplications. , 2004, Genomics.

[198]  T. Nakamura,et al.  Signal transmission from pineal photoreceptors to luminosity-type ganglion cells in the lamprey, Lampetra japonica , 1992, Neuroscience.

[199]  J. M. Morrow,et al.  Functional characterization of the rod visual pigment of the echidna (Tachyglossus aculeatus), a basal mammal , 2012, Visual Neuroscience.

[200]  V. Arshavsky,et al.  CNG-Modulin: A Novel Ca-Dependent Modulator of Ligand Sensitivity in Cone Photoreceptor cGMP-Gated Ion Channels , 2012, The Journal of Neuroscience.

[201]  A. Gorman,et al.  Photoreceptors in Primitive Chordates: Fine Structure, Hyperpolarizing Receptor Potentials, and Evolution , 1971, Science.

[202]  R. Plotnick,et al.  Information landscapes and sensory ecology of the Cambrian Radiation , 2010, Paleobiology.

[203]  R. M. Eakin,et al.  Fine structure of eyespots in tornarian larvae (Phylum: Hemichordata) , 1973, Zeitschrift für Zellforschung und Mikroskopische Anatomie.

[204]  H. V. Hateren,et al.  A cellular and molecular model of response kinetics and adaptation in primate cones and horizontal cells. , 2005 .

[205]  M. Delpech,et al.  Homozygous nonsense mutation in the FOXE3 gene as a cause of congenital primary aphakia in humans. , 2006, American journal of human genetics.

[206]  H. Kolb,et al.  Chapter 2 Neural architecture of the cat retina , 1984 .

[207]  C. R. Stockard The embryonic history of the lens in bdellostoma stouti in relation to recent experiments , 1906 .

[208]  D. Baskin Further observations on the fine structure and development of the infracerebral complex (“infracerebral gland”) of Nereis limnicola (Annelida, Polychaeta) , 2004, Cell and Tissue Research.

[209]  B. Reese Development of the retina and optic pathway , 2011, Vision Research.

[210]  John E. Dowling,et al.  Adaptation in Skate Photoreceptors , 1972, The Journal of general physiology.

[211]  Jun‐yuan Chen Evolutionary Scenario of the Early History of the Animal Kingdom: Evidence from Precambrian (Ediacaran) Weng’an and Early Cambrian Maotianshan Biotas, China , 2012 .

[212]  A. Gray,et al.  I. THE ORIGIN OF SPECIES BY MEANS OF NATURAL SELECTION , 1963 .

[213]  Helga Kolb,et al.  Rod and Cone Pathways in the Inner Plexiform Layer of Cat Retina , 1974, Science.

[214]  D. Hunt,et al.  Molecular ecology and adaptation of visual photopigments in craniates , 2012, Molecular ecology.

[215]  K. Yau,et al.  Activation of Visual Pigments by Light and Heat , 2011, Science.

[216]  J. Bowmaker Evolution of vertebrate visual pigments , 2008, Vision Research.

[217]  V. Meyer-Rochow,et al.  Review of larval and postlarval eye ultrastructure in the lamprey (cyclostomata) with special emphasis on Geotria australis (gray) , 1996, Microscopy research and technique.

[218]  A. Reichenbach,et al.  Phylogenetic constraints on retinal organisation and development , 1995, Progress in Retinal and Eye Research.

[219]  N. A. Locket,et al.  The Eyes of Hagfishes , 1998 .

[220]  A. Terakita,et al.  Evolution and diversity of opsins , 2012 .

[221]  D. Arendt,et al.  Molecular analysis of the amphioxus frontal eye unravels the evolutionary origin of the retina and pigment cells of the vertebrate eye , 2012, Proceedings of the National Academy of Sciences.

[222]  N. A. Locket Landolt's club in the retina of the African lungfish, Protopterus aethiopicus, Heckel. , 1970, Vision research.

[223]  K. Yau,et al.  Phototransduction Motifs and Variations , 2009, Cell.

[224]  Bernd Fritzsch,et al.  Evolution of the Deuterostome Central Nervous System: An Intercalation of Developmental Patterning Processes with Cellular Specification Processes , 2007 .

[225]  T. Morizumi,et al.  Chloride-dependent spectral tuning mechanism of L-group cone visual pigments. , 2013, Biochemistry.

[226]  C. E. Alvarez On the origins of arrestin and rhodopsin , 2008, BMC Evolutionary Biology.

[227]  Ivan R. Schwab Evolution's Witness: How Eyes Evolved , 2011 .

[228]  Joachim Wittbrodt,et al.  Individual Cell Migration Serves as the Driving Force for Optic Vesicle Evagination , 2006, Science.

[229]  J. Wittbrodt,et al.  Shaping the vertebrate eye. , 2009, Current opinion in genetics & development.

[230]  R. Wong,et al.  Nonapical Symmetric Divisions Underlie Horizontal Cell Layer Formation in the Developing Retina In Vivo , 2007, Neuron.

[231]  R. Mathies,et al.  Retinal counterion switch in the photoactivation of the G protein-coupled receptor rhodopsin , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[232]  S. D’Aniello,et al.  The ascidian homolog of the vertebrate homeobox gene Rx is essential for ocellus development and function. , 2006, Differentiation; research in biological diversity.

[233]  N. Artemyev,et al.  Unique transducins expressed in long and short photoreceptors of lamprey Petromyzon marinus , 2008, Vision Research.

[234]  Y. Fukada,et al.  Cone visual pigments are present in gecko rod cells. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[235]  T. Kusunoki,et al.  Retinal projections in the hagfish, Eptatretus burgeri , 1983, Brain Research.

[236]  Euan S. Harvey,et al.  Hagfish predatory behaviour and slime defence mechanism , 2011, Scientific reports.

[237]  H. Meissl,et al.  Evolution of photosensory pineal organs in new light: the fate of neuroendocrine photoreceptors. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[238]  Y. Fukada,et al.  A Median Third Eye: Pineal Gland Retraces Evolution of Vertebrate Photoreceptive Organs † , 2007, Photochemistry and photobiology.

[239]  B. Whitehouse Evolution And The Origin Of Life , 2009 .

[240]  D. Baylor,et al.  Responses of retinal rods to single photons. , 1979, The Journal of physiology.

[241]  D. Klein Evolution of The Vertebrate Pineal Gland: The Aanat Hypothesis , 2006, Chronobiology international.

[242]  R. Nelson,et al.  AII amacrine cells quicken time course of rod signals in the cat retina. , 1982, Journal of neurophysiology.

[243]  M. A. Knight,et al.  Ancient colour vision: multiple opsin genes in the ancestral vertebrates , 2003, Current Biology.

[244]  D. Baylor,et al.  Two components of electrical dark noise in toad retinal rod outer segments. , 1980, The Journal of physiology.

[245]  Samer Hattar,et al.  Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions , 2011, Trends in Neurosciences.

[246]  Yoshinori Shichida,et al.  Evolution of opsins and phototransduction , 2009, Philosophical Transactions of the Royal Society B: Biological Sciences.

[247]  On the duplex nature of the skate retina. , 1990, The Journal of experimental zoology. Supplement : published under auspices of the American Society of Zoologists and the Division of Comparative Physiology and Biochemistry.

[248]  Bernd Fritzsch,et al.  The eye in the brain: retinoic acid effects morphogenesis of the eye and pathway selection of axons but not the differentiation of the retina in Xenopus laevis , 1991, Neuroscience Letters.

[249]  Patrick Scheerer,et al.  Effect of channel mutations on the uptake and release of the retinal ligand in opsin , 2012, Proceedings of the National Academy of Sciences.

[250]  K. Hofmann,et al.  Transition of Rhodopsin into the Active Metarhodopsin II State Opens a New Light-induced Pathway Linked to Schiff Base Isomerization* , 2004, Journal of Biological Chemistry.

[251]  R. M. Eakin The third eye , 1970 .

[252]  D. Oprian,et al.  A Visual Pigment Expressed in Both Rod and Cone Photoreceptors , 2001, Neuron.

[253]  Á. Szél,et al.  Cerebrospinal Fluid Contacting Neurons in the Reduced Brain Ventricular System of the Atlantic Hagfish, Myxine glutinosa , 2003, Acta biologica Hungarica.

[254]  A. Hendrickson Landolt's club in the amphibian retina: a Golgi and electron microscope study. , 1966, Investigative ophthalmology.

[255]  M. Varnum,et al.  Subunit Configuration of Heteromeric Cone Cyclic Nucleotide-Gated Channels , 2004, Neuron.

[256]  T. Lamb,et al.  Phototransduction, dark adaptation, and rhodopsin regeneration the proctor lecture. , 2006, Investigative ophthalmology & visual science.

[257]  T. Lacalli,et al.  Frontal eye circuitry, rostral sensory pathways and brain organization in amphioxus larvae: evidence from 3D reconstructions , 1996 .

[258]  P. Röhlich,et al.  Cerebrospinal fluid-contacting neurons, sensory pinealocytes and Landolt's clubs of the retina as revealed by means of an electron-microscopic immunoreaction against opsin , 2004, Cell and Tissue Research.

[259]  C. Desplan,et al.  Deterministic or Stochastic Choices in Retinal Neuron Specification , 2012, Neuron.

[260]  K. Donner,et al.  Thermal activation and photoactivation of visual pigments. , 2004, Biophysical journal.

[261]  S. Collin,et al.  Evolution of colour discrimination in vertebrates and its implications for visual communication , 2006 .

[262]  J. Dowling,et al.  Structural features and adaptive properties of photoreceptors in the skate retina. , 1990, The Journal of experimental zoology. Supplement : published under auspices of the American Society of Zoologists and the Division of Comparative Physiology and Biochemistry.

[263]  Hisao Tsukamoto,et al.  Homologs of vertebrate Opn3 potentially serve as a light sensor in nonphotoreceptive tissue , 2013, Proceedings of the National Academy of Sciences.

[264]  T. Lamb,et al.  Dark adaptation and the retinoid cycle of vision , 2004, Progress in Retinal and Eye Research.

[265]  D. H. Rapaport Retinal Development: Retinal neurogenesis , 2006 .

[266]  J. I. Korenbrot,et al.  Speed, sensitivity, and stability of the light response in rod and cone photoreceptors: Facts and models , 2012, Progress in Retinal and Eye Research.

[267]  J. Pickel,et al.  A Regulatory Loop Involving PAX6, MITF, and WNT Signaling Controls Retinal Pigment Epithelium Development , 2012, PLoS genetics.

[268]  D. Stavenga Dark Regeneration of Invertebrate Visual Pigments , 1975 .

[269]  V. Govardovskii,et al.  Visual cells and visual pigments of the lamprey,Lampetra fluviatilis , 1984, Journal of Comparative Physiology A.

[270]  Y. Fukada,et al.  Primary structures of chicken cone visual pigments: vertebrate rhodopsins have evolved out of cone visual pigments. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[271]  B. Röll Gecko vision—visual cells, evolution, and ecological constraints , 2000, Journal of neurocytology.

[272]  Q. Wang,et al.  Evidence for Multiple Phototransduction Pathways in a Reef-Building Coral , 2012, PloS one.