[Paper] Image Retrieval Based on Supervised Local Regression and Global Alignment with Relevance Feedback for Insect Identification

[1]  Ricardo da Silva Torres,et al.  A correlation graph approach for unsupervised manifold learning in image retrieval tasks , 2016, Neurocomputing.

[2]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[3]  Chenglu Wen,et al.  Image-based orchard insect automated identification and classification method , 2012 .

[4]  Khalid M. Mosalam,et al.  Deep Transfer Learning for Image‐Based Structural Damage Recognition , 2018, Comput. Aided Civ. Infrastructure Eng..

[5]  J L Edwards,et al.  Interoperability of biodiversity databases: biodiversity information on every desktop. , 2000, Science.

[6]  Thomas G. Dietterich,et al.  Automated insect identification through concatenated histograms of local appearance features: feature vector generation and region detection for deformable objects , 2007, 2007 IEEE Workshop on Applications of Computer Vision (WACV '07).

[7]  Daniel L. Rubin,et al.  Relevance feedback for enhancing content based image retrieval and automatic prediction of semantic image features: Application to bone tumor radiographs , 2018, J. Biomed. Informatics.

[8]  Zhuowen Tu,et al.  Learning Context-Sensitive Shape Similarity by Graph Transduction , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Jing Huang,et al.  Image indexing using color correlograms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[10]  Muhammad Sharif,et al.  Content-Based Image Retrieval Features:A Survey , 2018 .

[11]  Bernhard Schölkopf,et al.  Transductive Classification via Local Learning Regularization , 2007, AISTATS.

[12]  Yi Yang,et al.  Ranking with local regression and global alignment for cross media retrieval , 2009, ACM Multimedia.

[13]  Jiawei Han,et al.  Semi-supervised Discriminant Analysis , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[14]  Juan Villegas-Cortez,et al.  Topology: A Theory of a Pseudometric-Based Clustering Model and Its Application in Content-Based Image Retrieval , 2019, Mathematical Problems in Engineering.

[15]  Alex Pentland,et al.  Photobook: Content-based manipulation of image databases , 1996, International Journal of Computer Vision.

[16]  Samy Bengio,et al.  Large Scale Online Learning of Image Similarity Through Ranking , 2009, J. Mach. Learn. Res..

[17]  Yi Yang,et al.  Mining Semantic Correlation of Heterogeneous Multimedia Data for Cross-Media Retrieval , 2008, IEEE Transactions on Multimedia.

[18]  Kilian Q. Weinberger,et al.  Densely Connected Convolutional Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[20]  Bo Dong,et al.  Explainability for Content-Based Image Retrieval , 2019, CVPR Workshops.

[21]  Keith C. Norris,et al.  A test of a pattern recognition system for identification of spiders , 1999 .

[22]  Esther de Ves,et al.  Applying logistic regression to relevance feedback in image retrieval systems , 2007, Pattern Recognit..

[23]  Jurandy Almeida,et al.  A graph-based ranked-list model for unsupervised distance learning on shape retrieval , 2016, Pattern Recognit. Lett..

[24]  Bernhard Schölkopf,et al.  Ranking on Data Manifolds , 2003, NIPS.

[25]  Kevin J. Gaston,et al.  Automating insect identification: exploring the limitations of a prototype system , 1999 .

[26]  Stefan Schröder,et al.  Biodiversity Informatics in Action: Identification and Monitoring of Bee Species using ABIS , 2001 .

[27]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[28]  Thomas S. Huang,et al.  Optimizing learning in image retrieval , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[29]  Jingrui He,et al.  Manifold-ranking based image retrieval , 2004, MULTIMEDIA '04.

[30]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Yang Song,et al.  The iNaturalist Species Classification and Detection Dataset , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[32]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[33]  Léon Bottou,et al.  Local Learning Algorithms , 1992, Neural Computation.

[34]  Nicu Sebe,et al.  Content-based multimedia information retrieval: State of the art and challenges , 2006, TOMCCAP.

[35]  Bram van Ginneken,et al.  A survey on deep learning in medical image analysis , 2017, Medical Image Anal..

[36]  Miki Haseyama,et al.  Image retrieval for identification of insects based on saliency map and distance metric learning , 2016, 2016 IEEE 5th Global Conference on Consumer Electronics.