Local Gaussian modelling of stochastic dynamical systems in the analysis of non-linear random vibrations

Stochastic dynamical system models for non-linear random vibrations are considered and their discrete-time version, non-linear time series models are introduced using the local Gaussian modelling method. Some computational problems and implications of the present method in non-linear time series analysis are discussed.

[1]  H. Tong,et al.  Threshold Autoregression, Limit Cycles and Cyclical Data , 1980 .

[2]  Stochastic theory of population genetics , 1983 .

[3]  Tohru Ozaki Non-linear threshold autoregressive models for non-linear random vibrations , 1981 .

[4]  S. M. Pandit,et al.  Unique estimates of the parameters of a continuous stationary stochastic process , 1975 .

[5]  T. Nakagawa,et al.  Statistical approach to computer control of cement rotary kilns , 1972 .

[6]  G. Yule On a Method of Investigating Periodicities in Disturbed Series, with Special Reference to Wolfer's Sunspot Numbers , 1927 .

[7]  Thomas K. Caughey,et al.  Derivation and Application of the Fokker-Planck Equation to Discrete Nonlinear Dynamic Systems Subjected to White Random Excitation , 1963 .

[8]  E. Hannan The identification of vector mixed autoregressive-moving average system , 1969 .

[9]  M. Bartlett On the Theoretical Specification and Sampling Properties of Autocorrelated Time‐Series , 1946 .

[10]  James Durbin,et al.  Efficient fitting of linear models for continuous stationary time-series from discrete data , 1960 .

[11]  Maurice G. Kendall,et al.  ON AUTOREGRESSIVE TIME SERIES , 1944 .

[12]  G. Walton A note on nonrandomized Neyman-shortest unbiased confidence intervals for the binomial and Poisson parameters , 1970 .

[13]  Genshiro Kitagawa,et al.  A new ship's auto pilot design through a stochastic model, , 1979, Autom..

[14]  T. Ozaki,et al.  Modelling nonlinear random vibrations using an amplitude-dependent autoregressive time series model , 1981 .

[15]  E. J. Hannan,et al.  Multiple time series , 1970 .

[16]  T. Ozaki 2 Non-linear time series models and dynamical systems , 1985 .

[17]  H. Akaike Markovian Representation of Stochastic Processes and Its Application to the Analysis of Autoregressive Moving Average Processes , 1974 .