Analysis of chitinase diversity in the Baltic Sea bottom sediments

[1]  S. Kolb,et al.  Microbial responses to chitin and chitosan in oxic and anoxic agricultural soil slurries , 2014 .

[2]  S. Sørensen,et al.  Mining of unexplored habitats for novel chitinases—chiA as a helper gene proxy in metagenomics , 2012, Applied Microbiology and Biotechnology.

[3]  E. Veslopolova,et al.  Microbially mediated methane and sulfur cycling in pockmark sediments of the Gdansk Basin, Baltic Sea , 2010 .

[4]  Ying Gao,et al.  Bioinformatics Applications Note Sequence Analysis Cd-hit Suite: a Web Server for Clustering and Comparing Biological Sequences , 2022 .

[5]  S. Harayama,et al.  Molecular diversity of bacterial chitinases in arable soils and the effects of environmental factors on the chitinolytic bacterial community , 2009 .

[6]  K. Myrberg,et al.  Physical Oceanography of the Baltic Sea , 2009 .

[7]  K. Holmfeldt,et al.  The Native Bacterioplankton Community in the Central Baltic Sea Is Influenced by Freshwater Bacterial Species , 2007, Applied and Environmental Microbiology.

[8]  R. Zeng,et al.  Chitinase gene diversity at a deep sea station of the east Pacific nodule province , 2007, Extremophiles.

[9]  T. Uchiyama,et al.  Improved inverse PCR scheme for metagenome walking , 2022 .

[10]  Xiang Xiao,et al.  Chitinase Genes in Lake Sediments of Ardley Island, Antarctica , 2005, Applied and Environmental Microbiology.

[11]  J. Kristjánsson,et al.  Investigation of the Microbial Ecology of Intertidal Hot Springs by Using Diversity Analysis of 16S rRNA and Chitinase Genes , 2005, Applied and Environmental Microbiology.

[12]  J. Hollibaugh,et al.  Chitinase Gene Sequences Retrieved from Diverse Aquatic Habitats Reveal Environment-Specific Distributions , 2004, Applied and Environmental Microbiology.

[13]  K. Emeis,et al.  Salinity changes in the central Baltic Sea (NW Europe) over the last 10000 years , 2003 .

[14]  Kazuya Watanabe,et al.  Molecular Characterization of Bacterial Populations in Petroleum-Contaminated Groundwater Discharged from Underground Crude Oil Storage Cavities , 2000, Applied and Environmental Microbiology.

[15]  S. Roseman,et al.  Physiological aspects of chitin catabolism in marine bacteria. , 1999, Biochimica et biophysica acta.

[16]  T. Fukui,et al.  A Unique Chitinase with Dual Active Sites and Triple Substrate Binding Sites from the Hyperthermophilic Archaeon Pyrococcus kodakaraensis KOD1 , 1999, Applied and Environmental Microbiology.

[17]  B. Henrissat,et al.  The third chitinase gene (chiC) of Serratia marcescens 2170 and the relationship of its product to other bacterial chitinases. , 1999, The Biochemical journal.

[18]  B. Henrissat,et al.  Plant chitinases use two different hydrolytic mechanisms , 1996, FEBS letters.

[19]  K. Poremba Hydrolytic enzymatic activity in deep-sea sediments , 1995 .

[20]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[21]  Zeyang Zhou,et al.  Characterization of the First Fungal Glycosyl Hydrolase Family 19 Chitinase (NbchiA) from Nosema bombycis (Nb) , 2016, The Journal of eukaryotic microbiology.

[22]  S. Spring,et al.  Caldithrix abyssi gen. nov., sp. nov., a nitrate-reducing, thermophilic, anaerobic bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent, represents a novel bacterial lineage. , 2003, International journal of systematic and evolutionary microbiology.

[23]  A. Stigebrandt Physical Oceanography of the Baltic Sea , 2001 .

[24]  G. Gooday The Ecology of Chitin Degradation , 1990 .