End-to-End Parkinson Disease Diagnosis using Brain MR-Images by 3D-CNN

In this work, we use a deep learning framework for simultaneous classification and regression of Parkinson disease diagnosis based on MR-Images and personal information (i.e. age, gender). We intend to facilitate and increase the confidence in Parkinson disease diagnosis through our deep learning framework.

[1]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[2]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[3]  Bo Peng,et al.  A multilevel-ROI-features-based machine learning method for detection of morphometric biomarkers in Parkinson’s disease , 2017, Neuroscience Letters.

[4]  Mehrad Moradshahi,et al.  Clinical Parameters Prediction for Gait Disorder Recognition , 2018, ArXiv.

[5]  Yoshua Bengio,et al.  Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..

[6]  Magnus Johnsson,et al.  Diagnosing Parkinson by using artificial neural networks and support vector machines , 2009 .

[7]  Aly A. Farag,et al.  Two-stage neural network for volume segmentation of medical images , 1997, Pattern Recognit. Lett..

[8]  A. Cerasa,et al.  Machine learning on brain MRI data for differential diagnosis of Parkinson's disease and Progressive Supranuclear Palsy , 2014, Journal of Neuroscience Methods.

[9]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[10]  Kaiming He,et al.  Group Normalization , 2018, ECCV.

[11]  A. Singleton,et al.  The Parkinson Progression Marker Initiative (PPMI) , 2011, Progress in Neurobiology.

[12]  Yuan Yan Tang,et al.  Classification of Parkinson's Disease and Essential Tremor Based on Structural MRI , 2016, 2016 7th International Conference on Cloud Computing and Big Data (CCBD).

[13]  David A. Rottenberg,et al.  Quantitative comparison of four brain extraction algorithms , 2004, NeuroImage.