SUSY constraints, relic density, and very early universe

The sensitivity of the lightest supersymmetric particle relic density calculation to different cosmological scenarios is discussed. In particular, we investigate the effects of modifications of the expansion rate and of the entropy content in the Early Universe. These effects, even with no observational consequences, can still drastically modify the relic density constraints on the SUSY parameter space. We suggest general parametrizations to evaluate such effects, and derive also constraints from Big-Bang nucleosynthesis. We show that using the relic density in the context of supersymmetric constraints requires a clear statement of the underlying cosmological model assumptions to avoid misinterpretations. On the other hand, we note that combining the relic density calculation with the eventual future discoveries at the LHC will hopefully shed light on the Very Early Universe properties.

[1]  Paolo Gondolo,et al.  Effect of a late decaying scalar on the neutralino relic density , 2006 .

[2]  N. Fornengo,et al.  Supersymmetric Dark Matter and the Reheating Temperature of the Universe , 2003 .

[3]  Gian Francesco Giudice,et al.  Largest temperature of the radiation era and its cosmological implications , 2001 .

[4]  H. Goldberg,et al.  Constraint on the photino mass from cosmology , 1983 .

[5]  K. Matchev,et al.  Connecting LHC, ILC, and quintessence , 2007, 0706.2375.

[6]  K. Kohri,et al.  MeV-scale reheating temperature and thermalization of the neutrino background , 2000, astro-ph/0002127.

[7]  C. Pallis Quintessential kination and cold dark matter abundance , 2005, hep-ph/0503080.

[8]  C. Pallis,et al.  Kination-dominated reheating and cold dark matter abundance , 2005, hep-ph/0510234.

[9]  Massive particle decay and cold dark matter abundance , 2004, hep-ph/0402033.

[10]  K. Jedamzik Big bang nucleosynthesis constraints on hadronically and electromagnetically decaying relic neutral particles , 2006, hep-ph/0604251.

[11]  P. Aguer,et al.  A compilation of charged-particle induced thermonuclear reaction rates , 1999 .

[12]  R. Trotta,et al.  A Markov chain Monte Carlo analysis of the CMSSM , 2006, hep-ph/0602028.

[13]  Lisa Randall,et al.  Wino cold dark matter from anomaly mediated SUSY breaking , 2000 .

[14]  Farvah Mahmoudi,et al.  SuperIso Relic: A program for calculating relic density and flavor physics observables in Supersymmetry , 2009, Comput. Phys. Commun..

[15]  Turner,et al.  Thermal relics: Do we know their abundances? , 1990, Physical review. D, Particles and fields.

[16]  Keith A. Olive,et al.  Calculations of relic densities in the early universe , 1988 .

[17]  Stefano Profumo,et al.  SUSY dark matter and quintessence , 2003 .

[18]  B. Nelson,et al.  Solving the LHC inverse problem with dark matter observations , 2008, 0804.2899.

[19]  Farvah Mahmoudi,et al.  SuperIso v2.3: A program for calculating flavor physics observables in supersymmetry , 2008, Comput. Phys. Commun..

[20]  R. Trotta,et al.  Efficient reconstruction of constrained MSSM parameters from LHC data: A case study , 2009, 0907.0594.

[21]  Pierre Salati Quintessence and the relic density of neutralinos , 2003 .

[22]  P. Gondolo,et al.  Neutralino with the right cold dark matter abundance in (almost) any supersymmetric model , 2006, hep-ph/0602230.

[23]  M. Kakizaki,et al.  Constraints on the very early universe from thermal WIMP dark matter , 2007, 0704.1590.

[24]  Dark energy and dark matter , 2003, hep-ph/0302080.

[25]  M. Halpern,et al.  FIVE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE OBSERVATIONS: LIKELIHOODS AND PARAMETERS FROM THE WMAP DATA , 2008, 0803.0586.

[26]  S. Hannestad What is the lowest possible reheating temperature , 2004, astro-ph/0403291.

[27]  L. Kawano Let's go: Early universe 2. Primordial nucleosynthesis the computer way , 1992 .

[28]  Graciela B. Gelmini,et al.  Cosmic abundances of stable particles: Improved analysis , 1991 .

[29]  Oscillation effects on thermalization of the neutrinos in the universe with low reheating temperature , 2005, astro-ph/0505395.

[30]  Determination of Dark Matter Properties at High-Energy Colliders , 2006, hep-ph/0602187.

[31]  Quintessential enhancement of dark matter abundance , 2003, hep-ph/0302159.

[32]  P. Gondolo,et al.  Neutralino relic density including coannihilations , 1997 .

[33]  L. Krauss New constraints on "INO" masses from cosmology (I). Supersymmetric "inos" , 1983 .

[34]  A. Pukhov,et al.  Requirements on collider data to match the precision of WMAP on supersymmetric dark matter. , 2004 .

[35]  F. Feroz,et al.  The impact of priors and observables on parameter inferences in the constrained MSSM , 2008, 0809.3792.

[36]  A. Arbey,et al.  SUSY constraints from relic density : High sensitivity to pre-BBN expansion rate , 2008, 0803.0741.

[37]  B. C. Allanach,et al.  SOFTSUSY: A program for calculating supersymmetric spectra☆ , 2001, hep-ph/0104145.

[38]  F. Gianotti,et al.  Updated post-WMAP benchmarks for supersymmetry , 2003, hep-ph/0306219.

[39]  Farvah Mahmoudi,et al.  SuperIso: A program for calculating the isospin asymmetry of B -> K*gamma in the MSSM , 2007, Comput. Phys. Commun..

[40]  Turner,et al.  Decaying particles do not "heat up" the Universe. , 1985, Physical review. D, Particles and fields.

[41]  Dark matter relic abundance and scalar-tensor dark energy , 2004, astro-ph/0403614.