Bifurcation loci of families of finite type meromorphic maps

We study bifurcation phenomena in natural families of rational, (transcendental) entire or meromorphic functions of finite type {fλ := φλ ◦ fλ0 ◦ ψ −1 λ }λ∈M , where M is a complex connected manifold, λ0 ∈M , fλ0 is a meromorphic map and φλ and ψλ are families of quasiconformal homeomorphisms depending holomorphically on λ and with ψλ(∞) =∞. There are fundamental differences compared to the rational or entire setting due to the presence of poles and therefore of parameters for which singular values are eventually mapped to infinity (singular parameters). Under mild geometric conditions we show that singular (asymptotic) parameters are the endpoint of a curve of parameters for which an attracting cycle progressively exits de domain, while its multiplier tends to zero. This proves the main conjecture in [FK21] (asymptotic parameters are virtual centers) in a very general setting. Other results in the paper show the connections between cycles exiting the domain, singular parameters, activity of singular orbits and J -unstability, converging to a theorem in the spirit of Mañé-Sad-Sullivan’s celebrated result in [MSS83, Lyu84].

[1]  A. Eremenko Geometric theory of meromorphic functions , 2021, 2110.07669.

[2]  Direct singularities and completely invariant domains of entire functions , 2006, math/0608027.

[3]  A separation theorem for entire transcendental maps , 2011, 1112.0531.

[4]  Ilpo Laine,et al.  Nevanlinna Theory and Complex Differential Equations , 1992 .

[5]  C. McMullen Braiding of the attractor and the failure of iterative algorithms , 1988 .

[6]  Walter Bergweiler,et al.  On the singularities of the inverse to a meromorphic function of finite order , 1995 .

[7]  D. Sullivan,et al.  On the dynamics of rational maps , 1983 .

[8]  Alexandre Eremenko,et al.  Dynamical properties of some classes of entire functions , 1992 .

[9]  Yunping Jiang,et al.  Slices of parameter space for meromorphic maps with two asymptotic values , 2019, Ergodic Theory and Dynamical Systems.

[10]  L. Keen,et al.  Slices of parameter spaces of generalized Nevanlinna functions , 2019, Discrete & Continuous Dynamical Systems - A.

[11]  Kari Astala,et al.  Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane (Pms-48) , 2009 .

[12]  Philipp Nadel,et al.  Ordinary Differential Equations In The Complex Domain , 2016 .

[13]  Jian-Hua Zheng,et al.  Value distribution of meromorphic functions , 2011 .

[14]  Krzysztof Bara'nski,et al.  Connectivity of Julia sets of Newton maps: a unified approach , 2015, Revista Matemática Iberoamericana.

[15]  L. Keen,et al.  A finiteness theorem for a dynamical class of entire functions , 1986, Ergodic Theory and Dynamical Systems.

[16]  DYNAMICS OF THE FAMILY λ tan z , 1997 .

[17]  Marina Fruehauf,et al.  Dynamics Of Transcendental Functions , 2016 .

[18]  W. Bergweiler,et al.  On the Zeros of Solutions of Linear Differential Equations of the Second Order , 1998 .

[19]  Rolf Newvanlinna Über Riemannsche Flächen mit endlich vielen Windungspunkten , 1932 .

[20]  Cycle doubling, merging, and renormalization in the tangent family , 2017, Conformal Geometry and Dynamics of the American Mathematical Society.

[21]  L. Keen,et al.  Stable Components in the Parameter Plane of Transcendental Functions Of Finite Type , 2017 .

[22]  Curtis T. McMullen,et al.  Complex Dynamics and Renormalization , 1994 .

[23]  W. Bergweiler The role of the Ahlfors five islands theorem in complex dynamics , 2000 .

[24]  R. Devaney,et al.  Dynamics of meromorphic maps : maps with polynomial schwarzian derivative , 1989 .