Machine learning identifies scale-free properties in disordered materials

The vast amount of design freedom in disordered systems expands the parameter space for signal processing. However, this large degree of freedom has hindered the deterministic design of disordered systems for target functionalities. Here, we employ a machine learning approach for predicting and designing wave-matter interactions in disordered structures, thereby identifying scale-free properties for waves. To abstract and map the features of wave behaviors and disordered structures, we develop disorder-to-localization and localization-to-disorder convolutional neural networks, each of which enables the instantaneous prediction of wave localization in disordered structures and the instantaneous generation of disordered structures from given localizations. We demonstrate that the structural properties of the network architectures lead to the identification of scale-free disordered structures having heavy-tailed distributions, thus achieving multiple orders of magnitude improvement in robustness to accidental defects. Our results verify the critical role of neural network structures in determining machine-learning-generated real-space structures and their defect immunity.

[1]  Alicia J. Kollár,et al.  Hyperbolic lattices in circuit quantum electrodynamics , 2018, Nature.

[2]  Roger G. Melko,et al.  Machine learning phases of matter , 2016, Nature Physics.

[3]  Yongmin Liu,et al.  Deep-Learning-Enabled On-Demand Design of Chiral Metamaterials. , 2018, ACS nano.

[4]  P. Sheng,et al.  Introduction to Wave Scattering, Localization and Mesoscopic Phenomena. Second edition , 1995 .

[5]  Luis Guillermo Villanueva,et al.  Observation of a phononic quadrupole topological insulator , 2017, Nature.

[6]  M. Segev,et al.  Anderson localization of light , 2009, Nature Photonics.

[7]  Flore K. Kunst,et al.  Corner states of light in photonic waveguides , 2018, Nature Photonics.

[8]  Michael W. Mahoney,et al.  Heavy-Tailed Universality Predicts Trends in Test Accuracies for Very Large Pre-Trained Deep Neural Networks , 2019, SDM.

[9]  Yun-Feng Xiao,et al.  Chaos-assisted broadband momentum transformation in optical microresonators , 2017, Science.

[10]  Julien Chabé,et al.  Experimental observation of the Anderson metal-insulator transition with atomic matter waves. , 2007, Physical review letters.

[11]  Trevon Badloe,et al.  Optimisation of colour generation from dielectric nanostructures using reinforcement learning. , 2019, Optics express.

[12]  Juan Carrasquilla,et al.  Machine learning quantum phases of matter beyond the fermion sign problem , 2016, Scientific Reports.

[13]  M. Kac Can One Hear the Shape of a Drum , 1966 .

[14]  Sven Behnke,et al.  LatticeNet: Fast Point Cloud Segmentation Using Permutohedral Lattices , 2019, RSS 2020.

[15]  Tomi Ohtsuki,et al.  Drawing Phase Diagrams of Random Quantum Systems by Deep Learning the Wave Functions , 2019 .

[16]  Y. Bromberg,et al.  Broadband Coherent Enhancement of Transmission and Absorption in Disordered Media. , 2015, Physical review letters.

[17]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[18]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[19]  S. Torquato,et al.  Reconstructing random media , 1998 .

[20]  Roberto Righini,et al.  Localization of light in a disordered medium , 1997, Nature.

[21]  Salvatore Torquato,et al.  Local density fluctuations, hyperuniformity, and order metrics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[23]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[24]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.

[25]  Jose I. Bilbao,et al.  A review and analysis of regression and machine learning models on commercial building electricity load forecasting , 2017 .

[26]  Ugur Demiryurek,et al.  Deep Learning: A Generic Approach for Extreme Condition Traffic Forecasting , 2017, SDM.

[27]  N. Park,et al.  Topological Hyperbolic Lattices. , 2020, Physical review letters.

[28]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[29]  O. Tomi,et al.  Drawing Phase Diagrams of Random Quantum Systems by Deep Learning the Wave Functions , 2020 .

[30]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[31]  M. Scheffler,et al.  Insightful classification of crystal structures using deep learning , 2017, Nature Communications.

[32]  Kevin Vynck,et al.  Engineering Disorder in Superdiffusive Lévy Glasses , 2010 .

[33]  S. Torquato Hyperuniform states of matter , 2018, Physics Reports.

[34]  Felix M. Izrailev,et al.  LOCALIZATION AND THE MOBILITY EDGE IN ONE-DIMENSIONAL POTENTIALS WITH CORRELATED DISORDER , 1999 .

[35]  César A. Hidalgo,et al.  Scale-free networks , 2008, Scholarpedia.

[36]  M. Segev,et al.  Transport and Anderson localization in disordered two-dimensional photonic lattices , 2007, Nature.

[37]  E. Economou,et al.  Localization and off-diagonal disorder☆ , 1977 .

[38]  Pierre Berini,et al.  Plasmonic colours predicted by deep learning , 2019, Scientific Reports.

[39]  N. Park,et al.  Bloch-like waves in random-walk potentials based on supersymmetry , 2015, Nature Communications.

[40]  B. Bollobás The evolution of random graphs , 1984 .

[41]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[42]  F. Moura,et al.  Delocalization in the 1D Anderson Model with Long-Range Correlated Disorder , 1998 .

[43]  Hans-Beat Bürgi,et al.  Determination and refinement of disordered crystal structures using evolutionary algorithms in combination with Monte Carlo methods. , 2002, Acta crystallographica. Section A, Foundations of crystallography.

[44]  A. Genack,et al.  Observation of Anderson localization in disordered nanophotonic structures , 2017, Science.

[45]  Dietmar Plenz,et al.  powerlaw: A Python Package for Analysis of Heavy-Tailed Distributions , 2013, PloS one.

[46]  Weak localization of light in superdiffusive random systems. , 2011, Physical review letters.

[47]  Naftali Tishby,et al.  Machine learning and the physical sciences , 2019, Reviews of Modern Physics.

[48]  S. Havlin,et al.  Breakdown of the internet under intentional attack. , 2000, Physical review letters.

[49]  M. Schreiber,et al.  The role of power-law correlated disorder in the Anderson metal-insulator transition , 2011, 1112.4469.

[50]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[51]  Zongfu Yu,et al.  Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures , 2017, 2019 Conference on Lasers and Electro-Optics (CLEO).

[52]  J. Mørk,et al.  Random nanolasing in the Anderson localized regime. , 2014, Nature nanotechnology.

[53]  M. Segev,et al.  Photonic topological Anderson insulators , 2018, Nature.

[54]  Joaquin F. Rodriguez-Nieva,et al.  Identifying topological order through unsupervised machine learning , 2018, Nature Physics.

[55]  Salvatore Torquato,et al.  Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids , 2013, Proceedings of the National Academy of Sciences.

[56]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[57]  Sunkyu Yu,et al.  Interdimensional optical isospectrality inspired by graph networks , 2016 .

[58]  Thomas F. Krauss,et al.  Enhanced energy storage in chaotic optical resonators , 2013, Nature Photonics.

[59]  A. Flecker,et al.  Riparian plant litter quality increases with latitude , 2017, Scientific Reports.

[60]  Yi Yang,et al.  Nanophotonic particle simulation and inverse design using artificial neural networks , 2018, Science Advances.

[61]  Yibo Zhang,et al.  Phase recovery and holographic image reconstruction using deep learning in neural networks , 2017, Light: Science & Applications.

[62]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[63]  Tomi Ohtsuki,et al.  Deep Learning the Quantum Phase Transitions in Random Two-Dimensional Electron Systems , 2016, 1610.00462.

[64]  A. Lagendijk,et al.  Observation of weak localization of light in a random medium. , 1985, Physical review letters.

[65]  Kyu-Tae Lee,et al.  A Generative Model for Inverse Design of Metamaterials , 2018, Nano letters.

[66]  P. Anderson,et al.  Scaling Theory of Localization: Absence of Quantum Diffusion in Two Dimensions , 1979 .

[67]  Michael W. Mahoney,et al.  Implicit Self-Regularization in Deep Neural Networks: Evidence from Random Matrix Theory and Implications for Learning , 2018, J. Mach. Learn. Res..

[68]  David L. Webb,et al.  One cannot hear the shape of a drum , 1992, math/9207215.

[69]  Diederik S. Wiersma,et al.  Disordered photonics , 2013, Nature Photonics.

[70]  P. Anderson Absence of Diffusion in Certain Random Lattices , 1958 .

[71]  F. H. Stillinger,et al.  Ensemble Theory for Stealthy Hyperuniform Disordered Ground States , 2015, 1503.06436.

[72]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[73]  Niels Olhoff,et al.  Topology optimization of continuum structures: A review* , 2001 .

[74]  Hui Cao,et al.  Suppressing spatiotemporal lasing instabilities with wave-chaotic microcavities , 2018, Science.

[75]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[76]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..