Technical Appendix for: Spatial Correlation Robust Inference with Errors in Location or Distance

Our model assumes a population of agents residing at d-dimensional integer lattice locations with one individual per location. We focus on an expectation zero process Xs indexed on this lattice that is assumed to be mixing as detailed below. For simplicity, we also assume the process is stationary: the joint distribution of Xs for a collection of locations is invariant to translation and so, assuming second moments exist, EfXsXs+hg = C(h): The econometrician’s sample consists of realizations of agents’random variables Xs at a collection of locations fsig inside a sample region and measurements of these locations. We use the notation j j to denote the number of agents in our sample region and, for simplicity, assume that all locations in are sampled. When taking limits, we view as one of a sequence of regions indexed by that grow to include the whole lattice, an increasing domain approach to asymptotic approximations. In what follows, we state the notion of mixing coe¢ cients used throughout this Appendix, and provide proofs of the results in Conley and Molinari (2005).

[1]  Timothy G. Conley,et al.  Spillovers from Local Market Human Capital and the Spatial Distribution of Productivity in Malaysia , 2003 .

[2]  Timothy G. Conley,et al.  A Spatial Analysis of Sectoral Complementarity , 2003, Journal of Political Economy.

[3]  Daniel A. Griffith,et al.  On the quality of likelihood-based estimators in spatial autoregressive models when the data dependence structure is misspecified , 1998 .

[4]  J. Pinkse Moran-Flavored Tests with Nuisance Parameters: Examples , 2004 .

[5]  How Does the Border Affect Productivity? Evidence from American and Canadian Manufacturing Industries , 2003 .

[6]  Lung-fei Lee,et al.  Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models , 2004 .

[7]  X. Guyon Parameter estimation for a stationary process on a d-dimensional lattice , 1982 .

[8]  Mark D. Manuszak The Impact of Upstream Mergers on Retail Gasoline Markets , 2001 .

[9]  P. Whittle ON STATIONARY PROCESSES IN THE PLANE , 1954 .

[10]  Todd C. Pulvino Do Asset Fire Sales Exist? An Empirical Investigation of Commercial Aircraft Transactions , 1998 .

[11]  Daniel A. Griffith,et al.  Error Propagation Modelling in Raster GIS: Overlay Operations , 1998, Int. J. Geogr. Inf. Sci..

[12]  Peter Hall,et al.  Properties of nonparametric estimators of autocovariance for stationary random fields , 1994 .

[13]  P. Moran Notes on continuous stochastic phenomena. , 1950, Biometrika.

[14]  Harry H. Kelejian,et al.  Spatial autocorrelation: A new computationally simple test with an application to per capita county police expenditures , 1992 .

[15]  Jeffrey D. Sachs,et al.  The United States as a Coastal Nation , 2003 .

[16]  U. Grenander,et al.  Some Problems in Estimating the Spectrum of a Time Series , 1956 .

[17]  Hiroshi Takahata,et al.  On the rates in the central limit theorem for weakly dependent random fields , 1983 .

[18]  John Noel A. C Gabrosek,et al.  The Effect on Attribute Prediction of Location Uncertainty in Spatial Data , 2002 .

[19]  Christopher R. Bollinger,et al.  THE IMPACT OF RAPID RAIL TRANSIT ON ECONOMIC DEVELOPMENT -- THE CASE OF ATLANTA'S MARTA. , 1997 .

[20]  Timothy G. Conley,et al.  Economic Distance and Cross-Country Spillovers , 2001 .

[21]  Harry H. Kelejian,et al.  A Generalized Moments Estimator for the Autoregressive Parameter in a Spatial Model , 1999 .

[22]  Harry H. Kelejian,et al.  On the asymptotic distribution of the Moran I test statistic with applications , 2001 .

[23]  K. Bell,et al.  Applying the Generalized-Moments Estimation Approach to Spatial Problems Involving Micro-Level Data , 2000, Review of Economics and Statistics.

[24]  Jan R. Magnus,et al.  Consistent maximum-likelihood estimation with dependent observations: The general (non-normal) case and the normal case , 1986 .

[25]  Timothy G. Conley GMM estimation with cross sectional dependence , 1999 .

[26]  K. Mardia,et al.  Maximum likelihood estimation of models for residual covariance in spatial regression , 1984 .

[27]  Brent R. Moulton An Illustration of a Pitfall in Estimating the Effects of Aggregate Variables on Micro Unit , 1990 .

[28]  Harvey S. Rosen,et al.  Budget spillovers and fiscal policy interdependence: Evidence from the states , 1993 .

[29]  L. Anselin Spatial Econometrics: Methods and Models , 1988 .

[30]  L. Anselin,et al.  Measuring the benefits of air quality improvement: a spatial hedonic approach , 1998 .

[31]  T. W. Anderson,et al.  Statistical analysis of time series , 1972 .

[32]  M. Rosenblatt Stationary sequences and random fields , 1985 .

[33]  Giorgio Topa,et al.  Social interactions, local spillovers and unemployment , 2001 .

[34]  A. Case Spatial Patterns in Household Demand , 1991 .

[35]  Donald W. K. Andrews,et al.  An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator , 1992 .

[36]  Joseph P. Romano,et al.  On flat-top kernel spectral density estimators for homogeneous random fields , 1996 .

[37]  G. Oehlert,et al.  Regional Trends in Sulfate Wet Deposition , 1993 .

[38]  N. Cressie,et al.  Spatial Statistics in the Presence of Location Error with an Application to Remote Sensing of the Environment , 2003 .

[39]  Bharat Trehan,et al.  Location and the Growth of Nations , 1997 .

[40]  M. Wall,et al.  Investigating the Use of the Variogram for Lattice Data , 2004 .

[41]  M. Bartlett Periodogram analysis and continuous spectra. , 1950, Biometrika.

[42]  Noel A Cressie,et al.  Asymptotics for REML estimation of spatial covariance parameters , 1996 .

[43]  J. Kiefer,et al.  An Introduction to Stochastic Processes. , 1956 .

[44]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[45]  Timothy G. Conley,et al.  Socio-economic Distance and Spatial Patterns in Unemployment Journal of Applied Econometrics 17 , 2002 .

[46]  Badi H. Baltagi,et al.  Testing Panel Data Regression Models with Spatial Error Correlation , 2002 .

[47]  Lung-fei Lee Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Econometric Models I: Spatial Autoregressive Processes , 2001 .

[48]  Timothy G. Conley,et al.  ECONOMIC DISTANCE, SPILLOVERS, AND CROSS-COUNTRY COMPARISONS , 1998 .

[49]  Timothy G. Conley,et al.  BOOTSTRAPPING THE LONG RUN , 1997, Macroeconomic Dynamics.

[50]  Lung-fei Lee Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Econometric Models II: Mixed Regressive, Spatial Autoregressive Models , 2001 .

[51]  H. White,et al.  Nonlinear Regression with Dependent Observations , 1984 .

[52]  Kanti V. Mardia,et al.  Spectral and circulant approximations to the likelihood for stationary Gaussian random fields , 1996 .

[53]  Characterisations of Set-Indexed Brownian Motion and Associated Conditions for Finite-Dimensional Convergence , 1986 .

[54]  Erwin Bolthausen,et al.  On the Central Limit Theorem for Stationary Mixing Random Fields , 1982 .

[55]  Joris Pinkse,et al.  Spatial Price Competition: A Semiparametric Approach , 2002 .

[56]  P. Robinson,et al.  Modified whittle estimation of multilateral spatial models , 2003 .

[57]  I. Ibragimov,et al.  Independent and stationary sequences of random variables , 1971 .

[58]  Nicholas I. Fisher,et al.  On the Nonparametric Estimation of Covariance Functions , 1994 .

[59]  Sergio J. Rey,et al.  Advances in Spatial Econometrics , 2004 .

[60]  L. Breuer Introduction to Stochastic Processes , 2022, Statistical Methods for Climate Scientists.

[61]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[62]  K. Ord Estimation Methods for Models of Spatial Interaction , 1975 .