A clustering algorithm for identifying multiple outliers in linear regression

[1]  James R. Simpson New Methods and Comparative Evaluations for Robust and Biased-Robust Regression Estimation, , 1995 .

[2]  V. Yohai,et al.  The Detection of Influential Subsets in Linear Regression by Using an Influence Matrix , 1995 .

[3]  J. Simonoff,et al.  Procedures for the Identification of Multiple Outliers in Linear Models , 1993 .

[4]  Comments on Marr and Quesenberry (1991) , 1992 .

[5]  Jeffrey S. Simonoff,et al.  General Approaches to Stepwise Identification of Unusual Values in Data Analysis , 1991 .

[6]  Sanford Weisberg,et al.  Directions in Robust Statistics and Diagnostics , 1991 .

[7]  Peter J. Rousseeuw,et al.  Finding Groups in Data: An Introduction to Cluster Analysis , 1990 .

[8]  P. Rousseeuw,et al.  Unmasking Multivariate Outliers and Leverage Points , 1990 .

[9]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[10]  G. W. Milligan,et al.  An examination of procedures for determining the number of clusters in a data set , 1985 .

[11]  Robert F. Ling,et al.  K-Clustering as a Detection Tool for Influential Subsets in Regression , 1984 .

[12]  G. V. Kass,et al.  Location of Several Outliers in Multiple-Regression Data Using Elemental Sets , 1984 .

[13]  Richard A. Johnson,et al.  Applied Multivariate Statistical Analysis , 1983 .

[14]  S. Weisberg,et al.  Characterizations of an Empirical Influence Function for Detecting Influential Cases in Regression , 1980 .

[15]  W. W. Muir,et al.  Regression Diagnostics: Identifying Influential Data and Sources of Collinearity , 1980 .

[16]  R. Mojena,et al.  Hierarchical Grouping Methods and Stopping Rules: An Evaluation , 1977, Comput. J..

[17]  J. Hartigan Clustering Algorithms , 1975 .

[18]  D. G. Beech,et al.  Statistical Theory and Methodology in Science and Engineering. , 1961 .