Proton exchange membrane fuel cell degradation and testing: review

This paper reviews recent studies of proton exchange membrane (PEM) durability to highlight areas where further research is required to develop durable membrane materials. Degradation mechanisms of PEM are reviewed to understand both the change in membrane performance with time in various applications and the main phenomena causing degradation. Commonly used degradation detection and testing techniques are outlined. This review also focuses on gaps in the published literature that limit our understanding of degradation mechanisms and the correlation between them. These gaps need to be well understood in order to produce durable PEM fuel cells.

[1]  D. Wilkinson,et al.  Degradation of polymer electrolyte membranes , 2006 .

[2]  T. Ohsaka,et al.  A simple in situ characterization technique for the onset of the chemical degradation of PEM fuel cells' fluorinated membranes , 2008 .

[3]  Xuemin Yan,et al.  Proton exchange membrane with hydrophilic capillaries for elevated temperature PEM fuel cells , 2009 .

[4]  Rui Chen,et al.  A review of performance degradation and failure modes for hydrogen-fuelled polymer electrolyte fuel cells , 2008 .

[5]  M. Yandrasits,et al.  Proton Exchange Membranes for Fuel Cell Applications , 2006 .

[6]  M. Inaba,et al.  Impacts of air bleeding on membrane degradation in polymer electrolyte fuel cells , 2008 .

[7]  G. Inzelt,et al.  Electron and proton conducting polymers: Recent developments and prospects , 2000 .

[8]  T. Ohsaka,et al.  Effect of load, temperature and humidity on the pH of the water drained out from H2/air polymer electrolyte membrane fuel cells , 2009 .

[9]  Ravindra Datta,et al.  Thermodynamics and Proton Transport in Nafion I. Membrane Swelling, Sorption, and Ion-Exchange Equilibrium , 2005 .

[10]  Minoru Inaba,et al.  Durability of perfluorinated ionomer membrane against hydrogen peroxide , 2006 .

[11]  Karren L. More,et al.  PEM Fuel Cell Durability With Transportation Transient Operation , 2006 .

[12]  Frédéric Maillard,et al.  Membrane and Active Layer Degradation upon PEMFC Steady-State Operation I. Platinum Dissolution and Redistribution within the MEA , 2007 .

[13]  Minoru Inaba,et al.  Gas crossover and membrane degradation in polymer electrolyte fuel cells , 2006 .

[14]  Jiujun Zhang,et al.  A review of accelerated stress tests of MEA durability in PEM fuel cells , 2009 .

[15]  K. Agbossou,et al.  Dynamic behavior of a PEM fuel cell stack for stationary applications , 2001 .

[16]  Hermann Kronberger,et al.  Contaminant absorption and conductivity in polymer electrolyte membranes , 2005 .

[17]  D. Mahajan,et al.  Durability and characterization studies of polymer electrolyte membrane fuel cell’s coated aluminum bipolar plates and membrane electrode assembly , 2009 .

[18]  Ronghuan He,et al.  PBI‐Based Polymer Membranes for High Temperature Fuel Cells – Preparation, Characterization and Fuel Cell Demonstration , 2004 .

[19]  Tao Wang,et al.  Design, fabrication and performance characterization of a miniature PEMFC stack based on MEMS technology , 2007, International Journal of Electrochemical Science.

[20]  Jun Shen,et al.  A review of PEM fuel cell durability: Degradation mechanisms and mitigation strategies , 2008 .

[21]  Yuyan Shao,et al.  Proton exchange membrane fuel cell from low temperature to high temperature: Material challenges , 2007 .

[22]  T. W. Sherman,et al.  A polymer electrolyte fuel cell life test: 3 years of continuous operation , 2006 .

[23]  W. B. Johnson,et al.  Mechanical behavior of fuel cell membranes under humidity cycles and effect of swelling anisotropy on the fatigue stresses , 2007 .

[24]  In-Hwan Oh,et al.  Effects of a hydrogen and air supply procedure on the performance degradation of PEMFCs , 2010 .

[25]  Tae-Won Lim,et al.  Performance and lifetime analysis of the kW-class PEMFC stack , 2002 .

[26]  S. Rowshanzamir,et al.  Review of the proton exchange membranes for fuel cell applications , 2010 .

[27]  Ravindra Datta,et al.  Performance analysis and impedance spectral signatures of high temperature PBI–phosphoric acid gel membrane fuel cells , 2006 .

[28]  Lin Wang,et al.  A parametric study of PEM fuel cell performances , 2003 .

[29]  G.J.M. Janssen,et al.  Proton-exchange-membrane fuel cells durability evaluated by load-on/off cycling , 2009 .

[30]  Oumarou Savadogo,et al.  Parameters of PEM fuel-cells based on new membranes fabricated from Nafion®, silicotungstic acid and thiophene , 2000 .

[31]  James Larminie,et al.  Fuel Cell Systems Explained , 2000 .

[32]  Lin Wang,et al.  Performance studies of PEM fuel cells with interdigitated flow fields , 2004 .

[33]  David A. Harrington,et al.  Characterisation of proton exchange membrane fuel cell (PEMFC) failures via electrochemical impedance spectroscopy , 2006 .

[34]  Bing Li,et al.  Investigation of dynamic driving cycle effect on performance degradation and micro-structure change of PEM fuel cell , 2009 .

[35]  Qunhui Guo,et al.  Sulfonated and crosslinked polyphosphazene-based proton-exchange membranes , 1999 .

[36]  Fang-Bor Weng,et al.  Experimental investigation of PEM fuel cell aging under current cycling using segmented fuel cell , 2010 .

[37]  D. Wilkinson,et al.  Aging mechanisms and lifetime of PEFC and DMFC , 2004 .

[38]  Ay Su,et al.  The effect of low humidity on the uniformity and stability of segmented PEM fuel cells , 2008 .

[39]  Hsiu-Li Lin,et al.  Durability and stability test of proton exchange membrane fuel cells prepared from polybenzimidazole/poly(tetrafluoro ethylene) composite membrane , 2009 .

[40]  K. S. Dhathathreyan,et al.  Development of polymer electrolyte membrane fuel cell stack , 1999 .

[41]  S. Kær,et al.  Electrochemical characterization of a polybenzimidazole-based high temperature proton exchange membrane unit cell , 2009 .

[42]  Fang Wang,et al.  A degradation study of Nafion proton exchange membrane of PEM fuel cells , 2007 .

[43]  S. Case,et al.  Durability study of proton exchange membrane fuel cells under dynamic testing conditions with cyclic current profile , 2006 .

[44]  D. Wood,et al.  VII.I.3 PEM Fuel Cell Durability , 2004 .

[45]  M. De Francesco,et al.  Nafion degradation in PEFCs from end plate iron contamination , 2003 .

[46]  Wei-Mon Yan,et al.  EXPERIMENTAL STUDIES ON OPTIMAL OPERATING CONDITIONS FOR DIFFERENT FLOW FIELD DESIGNS OF PEM FUEL CELLS , 2006 .

[47]  B. Wahdame,et al.  Comparison between two PEM fuel cell durability tests performed at constant current and under solicitations linked to transport mission profile , 2007 .

[48]  Daniel Hissel,et al.  Analysis of a PEMFC durability test under low humidity conditions and stack behaviour modelling using experimental design techniques , 2008 .

[49]  Michael Fowler,et al.  Reversible and irreversible degradation in fuel cells during Open Circuit Voltage durability testing , 2008 .

[50]  P. Cañizares,et al.  PBI-based polymer electrolyte membranes fuel cells: Temperature effects on cell performance and catalyst stability , 2007 .

[51]  Sanjeev Mukerjee,et al.  Degradation mechanism study of perfluorinated proton exchange membrane under fuel cell operating conditions , 2008 .

[52]  M. Marrony,et al.  Durability study and lifetime prediction of baseline proton exchange membrane fuel cell under severe operating conditions , 2008 .

[53]  G. Bondarenko,et al.  Chemical aging of Nafion : FTIR study , 2006 .

[54]  Mahlon Wilson,et al.  Scientific aspects of polymer electrolyte fuel cell durability and degradation. , 2007, Chemical reviews.

[55]  Shudong Wang,et al.  Selective CO oxidation with real methanol reformate over monolithic Pt group catalysts: PEMFC applications , 2006 .

[56]  R. Mcdonald,et al.  Effects of Deep Temperature Cycling on Nafion® 112 Membranes and Membrane Electrode Assemblies , 2004 .

[57]  D. Curtin,et al.  Advanced materials for improved PEMFC performance and life , 2004 .

[58]  J. C. Amphlett,et al.  Incorporation of voltage degradation into a generalised steady state electrochemical model for a PEM fuel cell , 2002 .

[59]  W. B. Johnson,et al.  Challenges for PEM fuel cell membranes , 2005 .

[60]  F. de Bruijn,et al.  Review: Durability and Degradation Issues of PEM Fuel Cell Components , 2008 .

[61]  Dai-jun Yang,et al.  Proton exchange membrane fuel cell degradation under close to open-circuit conditions: Part I: In situ diagnosis , 2010 .

[62]  Günther G. Scherer,et al.  Study of radiation-grafted FEP-G-polystyrene membranes as polymer electrolytes in fuel cells , 1995 .

[63]  Hiroyuki Uchida,et al.  Decomposition mechanism of perfluorosulfonic acid electrolyte in polymer electrolyte fuel cells , 2006 .

[64]  John P. Kopasz,et al.  The United States Department of Energy's high temperature, low relative humidity membrane program , 2007 .

[65]  Mu Pan,et al.  Degradation behavior of membrane–electrode-assembly materials in 10-cell PEMFC stack , 2006 .

[66]  Hiroyuki Uchida,et al.  Novel evaluation method for degradation rate of polymer electrolytes in fuel cells , 2005 .

[67]  David A. Dillard,et al.  Characterizing the fracture resistance of proton exchange membranes , 2008 .

[68]  C. Tomasi,et al.  Developments of new proton conducting membranes based on different polybenzimidazole structures for fuel cells applications , 2006 .

[69]  A. Vahidi,et al.  A review of the main parameters influencing long-term performance and durability of PEM fuel cells , 2008 .

[70]  Michael Fowler,et al.  Comparison of two accelerated Nafion™ degradation experiments , 2008 .