Continuous iterated density estimation evolutionary algorithms within the IDEA framework

In this paper, we formalize the notion of performing optimization by iterated density estimation evolutionary algorithms as the IDEA framework. These algorithms build probabilistic models and estimate probability densities based upon a selection of available points. We show how these probabilistic models can be built and used for different probability density functions within the IDEA framework. We put the emphasis on techniques for vectors of continuous random variables and thereby introduce new continuous evolutionary optimization algorithms.

[1]  S. Kullback,et al.  Information Theory and Statistics , 1959 .

[2]  C. N. Liu,et al.  Approximating discrete probability distributions with dependence trees , 1968, IEEE Trans. Inf. Theory.

[3]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[4]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[5]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[6]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[7]  Rich Caruana,et al.  Removing the Genetics from the Standard Genetic Algorithm , 1995, ICML.

[8]  Paul A. Viola,et al.  MIMIC: Finding Optima by Estimating Probability Densities , 1996, NIPS.

[9]  H. Mühlenbein,et al.  From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.

[10]  Louise Travé-Massuyès,et al.  Telephone Network Traffic Overloading Diagnosis and Evolutionary Computation Techniques , 1997, Artificial Evolution.

[11]  S. Baluja,et al.  Using Optimal Dependency-Trees for Combinatorial Optimization: Learning the Structure of the Search Space , 1997 .

[12]  Michèle Sebag,et al.  Extending Population-Based Incremental Learning to Continuous Search Spaces , 1998, PPSN.

[13]  Heinz Mühlenbein,et al.  FDA -A Scalable Evolutionary Algorithm for the Optimization of Additively Decomposed Functions , 1999, Evolutionary Computation.

[14]  Dirk Thierens,et al.  Linkage Information Processing In Distribution Estimation Algorithms , 1999, GECCO.

[15]  David E. Goldberg,et al.  The compact genetic algorithm , 1999, IEEE Trans. Evol. Comput..

[16]  D. Goldberg,et al.  BOA: the Bayesian optimization algorithm , 1999 .

[17]  Marcus Gallagher,et al.  Real-valued Evolutionary Optimization using a Flexible Probability Density Estimator , 1999, GECCO.

[18]  M. Pelikán,et al.  The Bivariate Marginal Distribution Algorithm , 1999 .

[19]  P. Bosman,et al.  An algorithmic framework for density estimation based evolutionary algorithms , 1999 .

[20]  Heinz Mühlenbein,et al.  Schemata, Distributions and Graphical Models in Evolutionary Optimization , 1999, J. Heuristics.

[21]  G. Harik Linkage Learning via Probabilistic Modeling in the ECGA , 1999 .

[22]  P. Bosman,et al.  IDEAs based on the normal kernels probability density function , 2000 .

[23]  David E. Goldberg,et al.  A Survey of Optimization by Building and Using Probabilistic Models , 2002, Comput. Optim. Appl..