Optical Spectra of the Special Au144 Gold-Cluster Compounds: Sensitivity to Structure and Symmetry

This report concerns the remarkable fine structure reported recently in the optical absorption spectrum of the ubiquitous icosahedral Au144(SR)60 cluster compounds when measured under cryogenic conditions. The theoretical explanation of the spectrum relied upon an I-symmetrized variant of the conventional Pd145-type structure-model; real-time TDDFT calculations revealed that, in contradistinction to the prior state of knowledge, the spectrum is profoundly structured and rich in quantum-state information.1 Reported herein is an investigation of the sensitivity of the theoretical electronic absorption spectra of this compound to variations in the structure. Both I-symmetric as well as asymmetric structure-models are considered; having the same core structure and connectivity, these differ in the mutual configurations about the pyramidal S atoms, which produce significant structure differences penetrating into the gold core. As R-groups, both methyl (R=CH3) and hydrogen (R=H) are considered. The effects on t...

[1]  A. Fortunelli,et al.  Comment on "(Au-Ag)144(SR)60 alloy nanomolecules" by C. Kumara and A. Dass, Nanoscale, 2011, 3, 3064. , 2015, Nanoscale.

[2]  Hannu Häkkinen,et al.  A critical size for emergence of nonbulk electronic and geometric structures in dodecanethiolate-protected Au clusters. , 2015, Journal of the American Chemical Society.

[3]  M. Gearing,et al.  Correction: Corrigendum: Tonic inhibition in dentate gyrus impairs long-term potentiation and memory in an Alzheimer’s disease model , 2014, Nature Communications.

[4]  Hans-Christian Weissker,et al.  Aspect-ratio- and size-dependent emergence of the surface-plasmon resonance in gold nanorods--an ab initio TDDFT study. , 2014, Physical chemistry chemical physics : PCCP.

[5]  R. Whetten,et al.  Structure & bonding of the gold-subhalide cluster I-Au144Cl60[z]. , 2013, Physical chemistry chemical physics : PCCP.

[6]  J. Enkovaara,et al.  Birth of the localized surface plasmon resonance in monolayer-protected gold nanoclusters. , 2013, ACS nano.

[7]  U. Landman,et al.  STEM Electron Diffraction and High Resolution Images Used in the Determination of the Crystal Structure of Au144(SR)60 Cluster. , 2013, The journal of physical chemistry letters.

[8]  Uzi Landman,et al.  Au(67)(SR)(35) nanomolecules: characteristic size-specific optical, electrochemical, structural properties and first-principles theoretical analysis. , 2013, The journal of physical chemistry. A.

[9]  R. Whetten,et al.  Ligand symmetry-equivalence on thiolate protected gold nanoclusters determined by NMR spectroscopy. , 2012, Nanoscale.

[10]  Y. Negishi,et al.  Synthesis and the Origin of the Stability of Thiolate-Protected Au130 and Au187 Clusters. , 2012, Journal of Physical Chemistry Letters.

[11]  R. Jin,et al.  Atomically precise gold nanocrystal molecules with surface plasmon resonance , 2012, Proceedings of the National Academy of Sciences.

[12]  R. Jin,et al.  Temperature-Dependent Optical Absorption Properties of Monolayer-Protected Au25 and Au38 Clusters , 2011 .

[13]  Keith E Maier,et al.  Growth inhibition of Staphylococcus aureus by mixed monolayer gold nanoparticles. , 2011, Small.

[14]  M. Moseler,et al.  A 58-electron superatom-complex model for the magic phosphine-protected gold clusters (Schmid-gold, Nanogold®) of 1.4-nm dimension , 2011 .

[15]  Joseph F. Parker,et al.  The story of a monodisperse gold nanoparticle: Au25L18. , 2010, Accounts of chemical research.

[16]  R. Jin,et al.  Total structure determination of thiolate-protected Au38 nanoparticles. , 2010, Journal of the American Chemical Society.

[17]  R. Jin,et al.  Site-Specific and Size-Dependent Bonding of Compositionally Precise Gold−Thiolate Nanoparticles from X-ray Spectroscopy , 2010 .

[18]  R. Jin,et al.  Quantum sized, thiolate-protected gold nanoclusters. , 2010, Nanoscale.

[19]  Roger D Kornberg,et al.  Synthesis and bioconjugation of 2 and 3 nm-diameter gold nanoparticles. , 2010, Bioconjugate chemistry.

[20]  R. Murray,et al.  Electrospray ionization mass spectrometry of intrinsically cationized nanoparticles, [Au(144/146)(SC(11)H(22)N(CH(2)CH(3))(3)(+))(x)(S(CH(2))(5)CH(3))(y)](x+). , 2009, Journal of the American Chemical Society.

[21]  R. Jin,et al.  Controlling nanoparticles with atomic precision: the case of Au144(SCH2CH2Ph)60. , 2009, Nano letters.

[22]  R. Whetten,et al.  Structure and Bonding in the Ubiquitous Icosahedral Metallic Gold Cluster Au144(SR)60 , 2009 .

[23]  Y. Negishi,et al.  Ubiquitous 8 and 29 kDa gold:alkanethiolate cluster compounds: mass-spectrometric determination of molecular formulas and structural implications. , 2008, Journal of the American Chemical Society.

[24]  Christian Melander,et al.  Inhibition of HIV fusion with multivalent gold nanoparticles. , 2008, Journal of the American Chemical Society.

[25]  H. Appel,et al.  octopus: a tool for the application of time‐dependent density functional theory , 2006 .

[26]  Angel Rubio,et al.  Propagators for the time-dependent Kohn-Sham equations. , 2004, The Journal of chemical physics.

[27]  Á. Rubio,et al.  octopus: a first-principles tool for excited electron-ion dynamics. , 2003 .

[28]  R. Whetten,et al.  Properties of a Ubiquitous 29 kDa Au:SR Cluster Compound † , 2001 .

[29]  D. Powell,et al.  Nanosized Pd145(CO)x(PEt3)30 Containing a Capped Three‐Shell 145‐Atom Metal‐Core Geometry of Pseudo Icosahedral Symmetry , 2000 .

[30]  T. Pilati,et al.  SYMMOL– a program to find the maximum symmetry in an atom cluster: an upgrade , 2000 .

[31]  J. Hainfeld,et al.  Ni-NTA-gold clusters target His-tagged proteins. , 1999, Journal of structural biology.

[32]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[33]  R. Murray,et al.  Gold nanoelectrodes of varied size: transition to molecule-like charging , 1998, Science.

[34]  Robert L. Whetten,et al.  Optical Absorption Spectra of Nanocrystal Gold Molecules , 1997 .

[35]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[36]  George F. Bertsch,et al.  Time-dependent local-density approximation in real time , 1996 .

[37]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[38]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[39]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[40]  U. Kreibig,et al.  Optical properties of systems containing Au55-clusters , 1989 .

[41]  J. Hainfeld,et al.  Site-specific biomolecule labeling with gold clusters. , 2010, Methods in enzymology.