Quantum state engineering, purification, and number-resolved photon detection with high-finesse optical cavities

We propose and analyze a multifunctional setup consisting of high-finesse optical cavities, beam splitters, and phase shifters. The basic scheme projects arbitrary photonic two-mode input states onto the subspace spanned by the product of Fock states |n>|n> with n=0,1,2,.... This protocol does not only provide the possibility to conditionally generate highly entangled photon number states as resource for quantum information protocols but also allows one to test and hence purify this type of quantum states in a communication scenario, which is of great practical importance. The scheme is especially attractive as a generalization to many modes allows for distribution and purification of entanglement in networks. In an alternative working mode, the setup allows for quantum nondemolition number resolved photodetection in the optical domain.

[1]  R. Mirin,et al.  Photon-number-discriminating detection using a quantum-dot, optically gated, field-effect transistor , 2007 .

[2]  H. Kimble,et al.  Teleportation of continuous quantum variables , 1998, Technical Digest. Summaries of Papers Presented at the International Quantum Electronics Conference. Conference Edition. 1998 Technical Digest Series, Vol.7 (IEEE Cat. No.98CH36236).

[3]  Sae Woo Nam,et al.  Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors , 1998 .

[4]  J. Eisert,et al.  Distillation of continuous-variable entanglement with optical means , 2003, quant-ph/0307106.

[5]  H. Kimble Strong interactions of single atoms and photons in cavity QED , 1998 .

[6]  Keiji Sasaki,et al.  An Entanglement Filter , 2009, Science.

[7]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[8]  A. Shields Semiconductor quantum light sources , 2007, 0704.0403.

[9]  R. G. Beausoleil,et al.  High-efficiency quantum-nondemolition single-photon-number-resolving detector , 2005 .

[10]  C. J. Foster,et al.  Bell inequalities for continuous-variable correlations. , 2007, Physical review letters.

[11]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[12]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[13]  Jian-Wei Pan,et al.  Experimental entanglement purification of arbitrary unknown states , 2003, Nature.

[14]  Philippe Grangier,et al.  Increasing entanglement between Gaussian states by coherent photon subtraction. , 2006, Physical review letters.

[15]  Jian-Wei Pan,et al.  Experimental realization of entanglement concentration and a quantum repeater. , 2003, Physical review letters.

[16]  Won-Young Hwang Quantum key distribution with high loss: toward global secure communication. , 2003, Physical review letters.

[17]  William Lo,et al.  New photon detector for device analysis: Superconducting single-photon detector based on a hot electron effect , 2001 .

[18]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[19]  Masahide Sasaki,et al.  Entanglement distillation from Gaussian input states , 2010 .

[20]  Andrew G. Glen,et al.  APPL , 2001 .

[21]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[22]  Andrew J. Shields,et al.  Photon number resolving detector based on a quantum dot field effect transistor , 2007 .

[23]  S. Braunstein,et al.  Unconditional teleportation of continuous-variable entanglement , 1999, QELS 2000.

[24]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[25]  J. O'Brien Optical Quantum Computing , 2007, Science.

[26]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[27]  A. J. Shields,et al.  An avalanche-photodiode-based photon-number-resolving detector , 2008, 0807.0330.

[28]  Entanglement purification of gaussian continuous variable quantum states , 1999, QELS 2000.

[29]  S. Braunstein,et al.  Quantum Information with Continuous Variables , 2004, quant-ph/0410100.

[30]  Simple criteria for the implementation of projective measurements with linear optics , 2003, quant-ph/0304057.

[31]  Kimble,et al.  Unconditional quantum teleportation , 1998, Science.

[32]  Natalia Korolkova,et al.  Weak Values and Continuous-Variable Entanglement Concentration , 2007, 0707.3917.

[33]  Blow,et al.  Continuum fields in quantum optics. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[34]  Radim Filip,et al.  Entanglement concentration of continuous-variable quantum states , 2003 .

[35]  John M. Martinis,et al.  Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination , 2003 .

[36]  E. Solano,et al.  Measure of phonon-number moments and motional quadratures through infinitesimal-time probing of trapped ions , 2005, quant-ph/0506098.

[37]  Xiaolong Su,et al.  Experimental demonstration of unconditional entanglement swapping for continuous variables. , 2004, Physical review letters.

[38]  A. Furusawa,et al.  High-fidelity teleportation beyond the no-cloning limit and entanglement swapping for continuous variables. , 2005, Physical review letters.

[39]  J. Fiurášek Gaussian transformations and distillation of entangled Gaussian states. , 2002, Physical review letters.

[40]  M. Abdel-Aty,et al.  Cavity QED nondemolition measurement scheme using quantized atomic motion , 2009, 0909.1958.

[41]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[42]  Tadashi Itoh,et al.  Measurement of the photonic de broglie wavelength of entangled photon pairs generated by spontaneous parametric down-conversion. , 2002, Physical review letters.

[43]  K. Banaszek,et al.  Conditional preparation of maximal polarization entanglement , 2003 .

[44]  K. Banaszek,et al.  Photon number resolving detection using time-multiplexing , 2003, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[45]  Yamamoto,et al.  Quantum nondemolition measurement of the photon number via the optical Kerr effect. , 1985, Physical review. A, General physics.

[46]  Gershon Kurizki,et al.  Improvement on teleportation of continuous variables by photon subtraction via conditional measurement , 2000 .

[47]  Shigeki Takeuchi,et al.  Multiphoton detection using visible light photon counter , 1999 .

[48]  Abrams,et al.  Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit , 1999, Physical review letters.

[49]  H. Kimble,et al.  Scalable photonic quantum computation through cavity-assisted interactions. , 2004, Physical review letters.

[50]  D. Hunger,et al.  Strong atom–field coupling for Bose–Einstein condensates in an optical cavity on a chip , 2007, Nature.

[51]  Radim Filip,et al.  Experimental entanglement distillation of mesoscopic quantum states , 2008, 0812.0709.

[52]  S. Girvin,et al.  Wiring up quantum systems , 2008, Nature.

[53]  Christine Silberhorn,et al.  Direct, loss-tolerant characterization of nonclassical photon statistics. , 2006, Physical Review Letters.

[54]  Vaidman Teleportation of quantum states. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[55]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[56]  S. Deleglise,et al.  Quantum jumps of light recording the birth and death of a photon in a cavity , 2006, Nature.

[57]  Hideo Mabuchi,et al.  Cavity-QED models of switches for attojoule-scale nanophotonic logic , 2009, 0907.2720.

[58]  M. Sasaki,et al.  Multiphoton discrimination at telecom wavelength with charge integration photon detector , 2005, quant-ph/0503050.

[59]  H. J. Kimble,et al.  Photon blockade in an optical cavity with one trapped atom , 2005, Nature.

[60]  Jaromir Fiurasek,et al.  Preparation of distilled and purified continuous-variable entangled states , 2008, 0812.0738.

[61]  J Eisert,et al.  Distilling Gaussian states with Gaussian operations is impossible. , 2002, Physical review letters.

[62]  Stephen M. Barnett,et al.  Conditional beam-splitting attack on quantum key distribution , 2001 .

[63]  Holland,et al.  Quantum nondemolition measurements of photon number by atomic beam deflection. , 1991, Physical review letters.

[64]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[65]  L.-M. Duan,et al.  Engineering superpositions of coherent states in coherent optical pulses through cavity-assisted interaction , 2005 .

[66]  R. J. Schoelkopf,et al.  Resolving photon number states in a superconducting circuit , 2007, Nature.

[67]  Konrad Banaszek,et al.  Photon counting with a loop detector. , 2003, Optics letters.

[68]  Jun Zhang,et al.  Photon Counting OTDR: Advantages and Limitations , 2010, Journal of Lightwave Technology.

[69]  Observation of the vacuum Rabi spectrum for one trapped atom. , 2004, Physical review letters.

[70]  Heralded two-photon entanglement from probabilistic quantum logic operations on multiple parametric down-conversion sources , 2003, quant-ph/0303113.

[71]  S. Deleglise,et al.  Progressive field-state collapse and quantum non-demolition photon counting , 2007, Nature.

[72]  J. Cirac,et al.  Characterization of Gaussian operations and distillation of Gaussian states , 2002, quant-ph/0204085.

[73]  Hideo Mabuchi,et al.  Physical model of continuous two-qubit parity measurement in a cavity-QED network , 2008, 0812.1246.

[74]  Collett,et al.  Quantum-nondemolition measurement of photon number using radiation pressure. , 1994, Physical review. A, Atomic, molecular, and optical physics.