Passive Mobile Phone Dataset to Construct Origin-destination Matrix: Potentials and Limitations

Mobile phone operators produce enormous amounts of data. In this paper we present applications performed with a dataset (communication events + handover and Location Area Up-date) collected by the operator Orange from 31 March to 11 April 2009 for the whole Paris Region. Trips are deduced from the spatio-temporal trajectory of devices through a hypothesis of stationarity within a Location Area in order to define activities. Trips are then aggregated in an origin-destination matrix which is compared with traditional data (census data and household travel survey).

[1]  S. Bekhor,et al.  Evaluating long‐distance travel patterns in Israel by tracking cellular phone positions , 2013 .

[2]  Gaetano Borriello,et al.  Extracting places from traces of locations , 2004, MOCO.

[3]  P. Arana,et al.  Influence of weather conditions on transit ridership: A statistical study using data from Smartcards , 2014 .

[4]  Vanessa Frías-Martínez,et al.  A Gender-Centric Analysis of Calling Behavior in a Developing Economy Using Call Detail Records , 2010, AAAI Spring Symposium: Artificial Intelligence for Development.

[5]  Erik Mellegård Obtaining Origin/Destination-matrices from cellular network data , 2011 .

[6]  J. Wolf,et al.  Impact of Underreporting on Mileage and Travel Time Estimates: Results from Global Positioning System-Enhanced Household Travel Survey , 2003 .

[7]  Cecilia Mascolo,et al.  Exploiting Foursquare and Cellular Data to Infer User Activity in Urban Environments , 2013, 2013 IEEE 14th International Conference on Mobile Data Management.

[8]  G. P. Pollini,et al.  Trends in handover design , 1996, IEEE Commun. Mag..

[9]  Margaret Martonosi,et al.  Ranges of human mobility in Los Angeles and New York , 2011, 2011 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops).

[10]  Carlo Ratti,et al.  Understanding individual mobility patterns from urban sensing data: A mobile phone trace example , 2013 .

[11]  Patrick Bonnel Postal, Telephone and Face-to-face Surveys : How Comparable Are They? , 2003 .

[12]  Ling Bian,et al.  From traces to trajectories: How well can we guess activity locations from mobile phone traces? , 2014 .

[13]  Stephen Greaves,et al.  Household travel surveys: Where are we going? , 2007 .

[14]  Zbigniew Smoreda,et al.  On the Use of Human Mobility Proxies for Modeling Epidemics , 2013, PLoS Comput. Biol..

[15]  Albert-László Barabási,et al.  Understanding individual human mobility patterns , 2008, Nature.

[16]  P. Olivier,et al.  Socio-Geography of Human Mobility: A Study Using Longitudinal Mobile Phone Data , 2012, PloS one.

[17]  Franco Davoli,et al.  Road traffic estimation from location tracking data in the mobile cellular network , 2000, 2000 IEEE Wireless Communications and Networking Conference. Conference Record (Cat. No.00TH8540).

[18]  Jure Leskovec,et al.  Friendship and mobility: user movement in location-based social networks , 2011, KDD.

[19]  Bruno Agard,et al.  Measuring transit use variability with smart-card data , 2007 .

[20]  Hillel Bar-Gera,et al.  Evaluation of a Cellular Phone-Based System for Measurements of Traffic Speeds and Travel Times: A Case Study from Israel , 2007 .

[21]  Johan Wideberg,et al.  Deriving origin destination data from a mobile phone network , 2007 .

[22]  Johanna Zmud,et al.  Designing Instruments to Improve Response , 2003 .

[23]  Shan Jiang,et al.  Calling for validation: demonstrating the use of mobile phone data to validate integrated land use transportation models , 2011, International Conference Virtual City and Territory (7è: 2011: Lisboa).

[24]  Fabio Ricciato,et al.  Steps towards the Extraction of Vehicular Mobility Patterns from 3G Signaling Data , 2012, TMA.

[25]  Liang Liu,et al.  Estimating Origin-Destination Flows Using Mobile Phone Location Data , 2011, IEEE Pervasive Computing.

[26]  J. White,et al.  Extracting origin destination information from mobile phone data , 2002 .

[27]  Sebastien Martin,et al.  ARCEP - Pouvoir de sanction : L'Autorité de régulation des communications électroniques et des postes récupère son pouvoir de sanctions avec le décret de mise en œuvre de l'Ordonnance de mars 2014 , 2014 .

[28]  Zbigniew Smoreda,et al.  Spatiotemporal Data from Mobile Phones for Personal Mobility Assessment , 2013 .

[29]  Gaetano Borriello,et al.  Extracting places from traces of locations , 2004 .

[30]  Markus Friedrich,et al.  Generating Trajectories from Mobile Phone Data , 2010 .

[31]  Catherine Morency,et al.  Smart card data use in public transit: A literature review , 2011 .

[32]  Zbigniew Smoreda,et al.  Moving and Calling: Mobile Phone Data Quality Measurements and Spatiotemporal Uncertainty in Human Mobility Studies , 2013, AGILE Conf..

[33]  Hui Zang,et al.  Mining call and mobility data to improve paging efficiency in cellular networks , 2007, MobiCom '07.

[34]  N. Govinda Rao,et al.  GLOBAL SYSTEM FOR MOBILE COMMUNICATION (GSM) , 2014 .

[35]  Alexandre M. Bayen,et al.  Understanding Road Usage Patterns in Urban Areas , 2012, Scientific Reports.