Screening in Interacting Particle Systems

We consider the Green's function of the Laplace operator in domains with spherical holes (particles). Under natural assumptions on the distribution of particles we show that the Green's function decays exponentially over distances larger than the screening length. This result is fundamental for example when deriving effective equations for coarsening systems in unbounded domains.

[1]  Doina Cioranescu,et al.  A Strange Term Coming from Nowhere , 1997 .

[2]  Felix Otto,et al.  Identification of the Dilute Regime in Particle Sedimentation , 2004 .

[3]  J. Velázquez,et al.  HOMOGENIZATION IN COARSENING SYSTEMS II: STOCHASTIC CASE , 2004 .

[4]  Carl Wagner,et al.  Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald‐Reifung) , 1961, Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie.

[5]  J. Velázquez On the Effect of Stochastic Fluctuations in the Dynamics of the Lifshitz–Slyozov–Wagner Model , 2000 .

[6]  J. Velázquez,et al.  Global well-posedness for an inhomogeneous LSW–model in unbounded domains , 2004 .

[7]  Felix Otto,et al.  Ostwald ripening: The screening length revisited , 2001 .

[8]  G. Papanicolaou,et al.  The point interaction approximation for diffusion in regions with many small holes , 1987 .

[9]  Riccardo March,et al.  AN IMAGE SEGMENTATION VARIATIONAL MODEL WITH FREE DISCONTINUITIES AND CONTOUR CURVATURE , 2004 .

[10]  J. Ross,et al.  Theory of Ostwald ripening: Competitive growth and its dependence on volume fraction , 1984 .

[11]  Felix Otto,et al.  Domain coarsening in thin films , 2001 .

[12]  I. Lifshitz,et al.  The kinetics of precipitation from supersaturated solid solutions , 1961 .

[13]  On an elaboration of M. Kac's theorem concerning eigenvalues of the Laplacian in a region with randomly distributed small obstacles , 1983 .

[14]  N. Alikakos,et al.  Ostwald Ripening for Dilute Systems Under Quasistationary Dynamics , 2003 .

[15]  E. Giusti Minimal surfaces and functions of bounded variation , 1977 .

[16]  N. Alikakos,et al.  Ostwald ripening in two dimensions—the rigorous derivation of the equations from the Mullins-Sekerka dynamics , 2004 .

[17]  J. Velázquez,et al.  HOMOGENIZATION IN COARSENING SYSTEMS I: DETERMINISTIC CASE , 2004 .

[18]  Robert V. Kohn,et al.  Topics in the Mathematical Modelling of Composite Materials , 1997 .

[19]  Jeffrey Rauch,et al.  Potential and scattering theory on wildly perturbed domains , 1975 .