Improved Radiometric and Spatial Capabilities of the Coastal Zone Imager Onboard Chinese HY-1C Satellite for Inland Lakes

The coastal zone imager (CZI) onboard HY-1C satellite provides a new data source to monitor the lake environments. Here, we provided a preliminary evaluation for the applications of CZI on inland lakes and a comparison with the <italic>in situ</italic>, Landsat-8 operational land imager (OLI), and Sentinel-2 multispectral instrument (MSI) measurements. First, the in-orbit signal-to-noise ratios (SNRs) were estimated based on homogenous ocean pixels. SNRs of CZI reached ~200:1 in the visible bands and ~150:1 at the near-infrared bands, which are comparable with the OLI and slightly higher than those of the MSI. Then, the performance of 6SV and fast line-of-sight atmospheric analysis of hypercubes (FLAASH) models on the retrievals of remote sensing reflectance (<inline-formula> <tex-math notation="LaTeX">$R_{\mathrm {rs}}$ </tex-math></inline-formula>) from CZI measurements was evaluated. 6SV-derived <inline-formula> <tex-math notation="LaTeX">$R_{\mathrm {rs}}$ </tex-math></inline-formula> showed higher accuracy than that of FLAASH, validated by the synchronous <italic>in situ</italic> (<inline-formula> <tex-math notation="LaTeX">$R^{2} \simeq 0.50$ </tex-math></inline-formula>, absolute percent difference (APD) <inline-formula> <tex-math notation="LaTeX">$\simeq ~20$ </tex-math></inline-formula>%) and OLI-derived <inline-formula> <tex-math notation="LaTeX">$R_{\mathrm {rs}}$ </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">$R^{2} \simeq ~0.75$ </tex-math></inline-formula>, APD <inline-formula> <tex-math notation="LaTeX">$\simeq ~5$ </tex-math></inline-formula>%). Finally, the abilities of CZI to observe cyanobacterial bloom, suspended particular matter (SPM), and chlorophyll-<inline-formula> <tex-math notation="LaTeX">$a$ </tex-math></inline-formula> (Chl<inline-formula> <tex-math notation="LaTeX">$a$ </tex-math></inline-formula>) were assessed. CZI-derived, the area of cyanobacterial bloom and SPM, showed good agreements with the results yielded by the OLI and MSI data on May 24, 2019, in Lake Taihu (<inline-formula> <tex-math notation="LaTeX">$R^{2} = 0.68$ </tex-math></inline-formula>, root-mean-square error (RMSE) = 9.68 mg/L, APD = 13.52% for SPM). While CZI only has four wide bands, Chl<inline-formula> <tex-math notation="LaTeX">$a$ </tex-math></inline-formula> derived by CZI using an empirical algorithm was relatively consistent with MSI-derived values. CZI demonstrated a decent performance in monitoring the environments of large lakes, and it is expected to add the bands for atmospheric correction and further works in the small-medium lakes in the future.

[1]  Antonio Ruiz-Verdú,et al.  Influence of phytoplankton pigment composition on remote sensing of cyanobacterial biomass , 2007 .

[2]  Marvin E. Bauer,et al.  Evaluation of medium to low resolution satellite imagery for regional lake water quality assessments , 2011 .

[3]  Susanna T. Y. Tong,et al.  Comparison of satellite reflectance algorithms for estimating chlorophyll-a in a temperate reservoir using coincident hyperspectral aircraft imagery and dense coincident surface observations , 2016 .

[4]  Chuanmin Hu A novel ocean color index to detect floating algae in the global oceans , 2009 .

[5]  Yang Liu,et al.  Regionally and Locally Adaptive Models for Retrieving Chlorophyll-a Concentration in Inland Waters From Remotely Sensed Multispectral and Hyperspectral Imagery , 2019, IEEE Transactions on Geoscience and Remote Sensing.

[6]  M. Bauer,et al.  A 20-year Landsat water clarity census of Minnesota's 10,000 lakes , 2008 .

[7]  Chuanmin Hu,et al.  Mapping macroalgal blooms in the Yellow Sea and East China Sea using HJ-1 and Landsat data: Application of a virtual baseline reflectance height technique , 2016 .

[8]  A. Michalak,et al.  Using Landsat to extend the historical record of lacustrine phytoplankton blooms: A Lake Erie case study , 2017 .

[9]  Lian Feng,et al.  Dynamic range and sensitivity requirements of satellite ocean color sensors: learning from the past. , 2012, Applied optics.

[10]  P Jeremy Werdell,et al.  Generalized ocean color inversion model for retrieving marine inherent optical properties. , 2013, Applied optics.

[11]  Stephanie C. J. Palmer,et al.  Remote sensing of inland waters: Challenges, progress and future directions , 2015 .

[12]  S. Bernard,et al.  An optimized Chlorophyll a switching algorithm for MERIS and OLCI in phytoplankton-dominated waters , 2018, Remote Sensing of Environment.

[13]  B. G. Mitchell,et al.  Algorithms for determining the absorption coefficient for aquatic particulates using the quantitative filter technique , 1990, Defense, Security, and Sensing.

[14]  Reid W. Sawtell,et al.  Determining remote sensing spatial resolution requirements for the monitoring of harmful algal blooms in the Great Lakes , 2019, Journal of Great Lakes Research.

[15]  Mati Kahru,et al.  Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, Revision 4, Volume IV: Inherent Optical Properties: Instruments, Characterizations, Field Measurements and Data Analysis Protocols , 2013 .

[16]  Xiaohan Liu,et al.  Long-Term Satellite Observations of Microcystin Concentrations in Lake Taihu during Cyanobacterial Bloom Periods. , 2015, Environmental science & technology.

[17]  Nima Pahlevan,et al.  Sentinel-2/Landsat-8 product consistency and implications for monitoring aquatic systems , 2019, Remote Sensing of Environment.

[18]  Menghua Wang,et al.  Requirement of minimal signal‐to‐noise ratios of ocean color sensors and uncertainties of ocean color products , 2017 .

[19]  Tingwei Cui,et al.  Out-of-Band Response for the Coastal Zone Imager (CZI) Onboard China’s Ocean Color Satellite HY-1C: Effect on the Observation Just above the Sea Surface , 2018, Sensors.

[20]  Anatoly A. Gitelson,et al.  The peak near 700 nm on radiance spectra of algae and water: relationships of its magnitude and position with chlorophyll concentration , 1992 .

[21]  Quinten Vanhellemont,et al.  Atmospheric correction of metre-scale optical satellite data for inland and coastal water applications , 2018, Remote Sensing of Environment.

[22]  Zhigang Cao,et al.  Evaluation of the sensitivity of China's next-generation ocean satellite sensor MWI onboard the Tiangong-2 space lab over inland waters , 2018, Int. J. Appl. Earth Obs. Geoinformation.

[23]  M. Kahru,et al.  Ocean Color Chlorophyll Algorithms for SEAWIFS , 1998 .

[24]  Bryan A. Franz,et al.  Toward Long-Term Aquatic Science Products from Heritage Landsat Missions , 2018, Remote. Sens..

[25]  Chengfeng Le,et al.  Ocean Color Continuity From VIIRS Measurements Over Tampa Bay , 2014, IEEE Geoscience and Remote Sensing Letters.

[26]  Q. Shen,et al.  Atmospheric correction of HJ-1 CCD imagery over turbid lake waters. , 2014, Optics Express.

[27]  Gong Lin,et al.  A semi-analytical scheme to estimate Secchi-disk depth from Landsat-8 measurements , 2016 .

[28]  Minwei Zhang,et al.  Atmospheric Correction Algorithm for HY-1C CZI over Turbid Waters , 2019, Journal of Coastal Research.