Bioinformatic characterization of epsA Gene from Riemerella anatipestifer

The epsA gene (Gene ID:11997253) of Riemerella anatipestifer (RA) was isolated in our laboratory. By using bioinformatics tools, the biological characteristics of epsA gene and EpsA protein was analyzed. The epsA gene was a 900-bp complete open reading frame, encoding EpsA protein of 299 amino acids. The relative molecular weight of EpsA protein was 32.676 kDa, and theoretical isoelectric point of 7.74. The EpsA protein, located at the outer membrane, had a N-terminal signal peptide between the 1st and the 23nd amino acids, a 23-amino-acid hydrophobic transmembrane domain at C-terminal region, and five probable B cell epitopes located at residue 23-32, 65-69, 127-131, 191-198, and 262-267. By PROSITE searching, nine N-myristoylation sites, seven Casein kinase II phosphorylation sites, two Protein kinase C phosphoraylation sites, and four N-glycosylation sites were found. These results of bioinformatic analysis provided rational data to elucidate biological features of epsA gene and EpsA protein, and could guide experimental research on biological function of EpsA protein.

[1]  J. Garnier,et al.  Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. , 1978, Journal of molecular biology.

[2]  Vasso Apostolopoulos,et al.  Crystal structure of a non-canonical low-affinity peptide complexed with MHC class I: a new approach for vaccine design. , 2002, Journal of molecular biology.

[3]  J. Deutscher,et al.  Phosphoproteomics in bacteria: towards a systemic understanding of bacterial phosphorylation networks , 2008, Expert review of proteomics.

[4]  W. Michalski,et al.  Molecular Characterization of a Secreted Enzyme with Phospholipase B Activity from Moraxella bovis , 2001, Journal of bacteriology.

[5]  J. Derrick,et al.  Outer membrane translocons: structural insights into channel formation. , 2011, Trends in microbiology.

[6]  T. Umland,et al.  The K1 Capsular Polysaccharide of Acinetobacter baumannii Strain 307-0294 Is a Major Virulence Factor , 2010, Infection and Immunity.

[7]  T G Burland,et al.  DNASTAR's Lasergene sequence analysis software. , 2000, Methods in molecular biology.

[8]  D. Wozniak,et al.  Role of polysaccharides in Pseudomonas aeruginosa biofilm development. , 2007, Current opinion in microbiology.

[9]  István Simon,et al.  The HMMTOP transmembrane topology prediction server , 2001, Bioinform..

[10]  J. Li,et al.  Riemerella anatipestifer infection in chickens. , 2011 .

[11]  Gajendra P. S. Raghava,et al.  PSLpred: prediction of subcellular localization of bacterial proteins , 2005, Bioinform..

[12]  James H. Naismith,et al.  Wza the translocon for E. coli capsular polysaccharides defines a new class of membrane protein , 2006, Nature.

[13]  H. Tan,et al.  Phylogenetic position of Riemerella anatipestifer based on 16S rRNA gene sequences. , 1997, International journal of systematic bacteriology.

[14]  Rolf Apweiler,et al.  Evaluation of methods for the prediction of membrane spanning regions , 2001, Bioinform..

[15]  M. Nei,et al.  MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. , 2011, Molecular biology and evolution.

[16]  M. W. Pandit,et al.  Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. , 1990, Protein engineering.

[17]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[18]  Narmada Thanki,et al.  CDD: a Conserved Domain Database for the functional annotation of proteins , 2010, Nucleic Acids Res..

[19]  C. Whitfield,et al.  The 3D structure of a periplasm-spanning platform required for assembly of group 1 capsular polysaccharides in Escherichia coli , 2007, Proceedings of the National Academy of Sciences.

[20]  S. Brunak,et al.  SignalP 4.0: discriminating signal peptides from transmembrane regions , 2011, Nature Methods.

[21]  P. Vandamme,et al.  Riemerella anatipestifer gen. nov., comb. nov., the causative agent of septicemia anserum exsudativa, and its phylogenetic affiliation within the Flavobacterium-Cytophaga rRNA homology group. , 1993, International journal of systematic bacteriology.

[22]  I. Roberts,et al.  Capsular polysaccharides in Escherichia coli. , 2008, Advances in applied microbiology.

[23]  H. M. Geysen,et al.  Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[24]  K. Leung,et al.  Comparison of the virulence of exopolysaccharide-producing Prevotella intermedia to exopolysaccharide non-producing periodontopathic organisms , 2011, BMC infectious diseases.

[25]  J. Thornton,et al.  Continuous and discontinuous protein antigenic determinants , 1986, Nature.

[26]  E. Emini,et al.  Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide , 1985, Journal of virology.

[27]  Ruiguang Ge,et al.  Bacterial Phosphoproteomic Analysis Reveals the Correlation Between Protein Phosphorylation and Bacterial Pathogenicity , 2011, Genom. Proteom. Bioinform..

[28]  J. Deutscher,et al.  Transmembrane modulator‐dependent bacterial tyrosine kinase activates UDP‐glucose dehydrogenases , 2003, The EMBO journal.

[29]  A. Martín-Martín,et al.  Importance of the Omp25/Omp31 family in the internalization and intracellular replication of virulent B. ovis in murine macrophages and HeLa cells. , 2008, Microbes and infection.

[30]  AnChun Cheng,et al.  Complete Genome Sequence of Riemerella anatipestifer Reference Strain , 2012, Journal of bacteriology.

[31]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[32]  Amos Bairoch,et al.  PROSITE, a protein domain database for functional characterization and annotation , 2009, Nucleic Acids Res..

[33]  Stephen H. Bryant,et al.  CD-Search: protein domain annotations on the fly , 2004, Nucleic Acids Res..

[34]  S. Raina,et al.  Phosphorylation‐mediated regulation of heat shock response in Escherichia coli , 2003, Molecular microbiology.

[35]  Complete genome sequence of Riemerella anatipestifer type strain (ATCC 11845T) , 2011 .

[36]  S. Lory,et al.  A genomic island in Pseudomonas aeruginosa carries the determinants of flagellin glycosylation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Yinyu Zhu,et al.  OmpA is a virulence factor of Riemerella anatipestifer. , 2011, Veterinary microbiology.

[38]  T. Morishita,et al.  The Effect of Route of Inoculation and Challenge Dosage on Riemerella anatipestifer Infection in Pekin Ducks (Anas platyrhynchos) , 2005, Avian diseases.

[39]  Carlos C. Goller,et al.  Revisiting the Escherichia coli polysaccharide capsule as a virulence factor during urinary tract infection: Contribution to intracellular biofilm development , 2010, Virulence.

[40]  J. Letesson,et al.  Effect of omp10 or omp19 Deletion on Brucella abortus Outer Membrane Properties and Virulence in Mice , 2002, Infection and Immunity.

[41]  R. Doolittle,et al.  A simple method for displaying the hydropathic character of a protein. , 1982, Journal of molecular biology.

[42]  S. Patterson,et al.  The evolution of tools for protein phosphorylation site analysis: from discovery to clinical application. , 2008, BioTechniques.

[43]  P. Y. Chou,et al.  Prediction of protein conformation. , 1974, Biochemistry.

[44]  J Ignacio Casal,et al.  Characterisation of a protective linear B cell epitope against feline parvoviruses. , 2001, Vaccine.

[45]  M. Jennings,et al.  Genetic characterization of pilin glycosylation in Neisseria meningitidis. , 2000, Microbiology.

[46]  E. Kaleta,et al.  Dose response study of enrofloxacin against Riemerella anatipestifer septicaemia in Muscovy and Pekin ducklings. , 1997, Avian pathology : journal of the W.V.P.A.

[47]  A. Zharkikh,et al.  Estimation of confidence in phylogeny: the complete-and-partial bootstrap technique. , 1995, Molecular phylogenetics and evolution.

[48]  Vasant Honavar,et al.  Recent advances in B-cell epitope prediction methods , 2010, Immunome research.

[49]  K. Chou,et al.  Gneg-mPLoc: a top-down strategy to enhance the quality of predicting subcellular localization of Gram-negative bacterial proteins. , 2010, Journal of theoretical biology.

[50]  Wanfei Liu,et al.  Complete Genome Sequence of the Pathogenic Bacterium Riemerella anatipestifer Strain RA-GD , 2011, Journal of bacteriology.

[51]  M. Ryll,et al.  Pathogenesis of Riemerella anatipestifer in turkeys after experimental mono-infection via respiratory routes or dual infection together with the avian metapneumovirus , 2009, Avian pathology : journal of the W.V.P.A.

[52]  M. Schmidt,et al.  Sweet new world: glycoproteins in bacterial pathogens. , 2003, Trends in microbiology.

[53]  H. M. Geysen,et al.  Strategies for epitope analysis using peptide synthesis. , 1987, Journal of immunological methods.

[54]  C. Chiu,et al.  Genomic diversity and molecular differentiation of Riemerella anatipestifer associated with eight outbreaks in five farms , 2008, Avian pathology : journal of the W.V.P.A.

[55]  P. Karplus,et al.  Prediction of chain flexibility in proteins , 1985, Naturwissenschaften.