Statistical models and methods for dependence in insurance data

Abstract Copulas are becoming a quite flexible tool in modeling dependence among the components of a multivariate vector. In order to predict extreme losses in insurance and finance, extreme value copulas and tail copulas play a more important role than copulas. In this paper, we review some estimation and testing procedures for both, extreme value copulas and tail copulas, which received much less attention in the literature than corresponding studies of copulas.

[1]  Dimension reduction based on extreme dependence , 2010 .

[2]  E. J. Gumbel,et al.  Statistics of Extremes. , 1960 .

[3]  B. Rémillard,et al.  Test of independence and randomness based on the empirical copula process , 2004 .

[4]  Thorsten Rheinländer Risk Management: Value at Risk and Beyond , 2003 .

[5]  H. Joe Multivariate extreme value distributions , 1997 .

[6]  Xiaotong Shen,et al.  Empirical Likelihood , 2002 .

[7]  Jian Chen,et al.  Empirical likelihood based confidence intervals for copulas , 2009, J. Multivar. Anal..

[8]  Andrew J. Patton Copula-Based Models for Financial Time Series , 2009 .

[9]  Kilani Ghoudi,et al.  Propriétés statistiques des copules de valeurs extrêmes bidimensionnelles , 1998 .

[10]  Thomas Mikosch,et al.  Copulas: Tales and facts , 2006 .

[11]  Daniel Berg Copula goodness-of-fit testing: an overview and power comparison , 2009 .

[12]  Ludger Rüschendorf,et al.  Asymptotic Distributions of Multivariate Rank Order Statistics , 1976 .

[13]  N. Kolev,et al.  Copulas: A Review and Recent Developments , 2006 .

[14]  A. V. D. Vaart,et al.  Asymptotic Statistics: U -Statistics , 1998 .

[15]  C. Klüppelberg,et al.  Peng : Estimating Tail Dependence of Elliptical Distributions , 2007 .

[16]  Gernot Müller,et al.  Bayesian estimation of Lévy copulas for multivariate operational risks. , 2010 .

[17]  Rafael Schmidt,et al.  Non‐parametric Estimation of Tail Dependence , 2006 .

[18]  Christian Genest,et al.  A goodness-of-fit test for bivariate extreme-value copulas , 2011, 1102.2078.

[19]  Xiaohong Chen,et al.  Efficient Estimation of Semiparametric Multivariate Copula Models Efficient Estimation of Semiparametric Multivariate Copula Models * , 2004 .

[20]  Jean‐François Quessy,et al.  On a new goodness‐of‐fit process for families of copulas , 2009 .

[21]  C. Klüppelberg,et al.  Estimating the tail dependence function of an elliptical distribution , 2007 .

[22]  M. Wegkamp,et al.  Weak Convergence of Empirical Copula Processes , 2004 .

[23]  P. Hall,et al.  Distribution and dependence-function estimation for bivariate extreme-value distributions , 2000 .

[24]  A. V. D. Vaart Asymptotic Statistics: Delta Method , 1998 .

[25]  C. Klüppelberg,et al.  Semi‐Parametric Models for the Multivariate Tail Dependence Function – the Asymptotically Dependent Case , 2008 .

[26]  Y. Qi Almost sure convergence of the stable tail empirical dependence function in multivariate extreme statistics , 1997 .

[27]  Noël Veraverbeke,et al.  Empirical Likelihood for Non‐Smooth Criterion Functions , 2009 .

[28]  J. Lawless,et al.  Empirical Likelihood and General Estimating Equations , 1994 .

[29]  Artem Prokhorov,et al.  A Goodness-of-fit Test for Copulas , 2014 .

[30]  Richard A. Davis,et al.  Handbook of Financial Time Series , 2009 .

[31]  Holger Dette,et al.  Some comments on goodness-of-fit tests for the parametric form of the copula based on L2-distances , 2010, J. Multivar. Anal..

[32]  Claudia Klüppelberg,et al.  Parameter estimation of a bivariate compound Poisson process , 2010 .

[33]  P. Embrechts,et al.  Risk Management: Correlation and Dependence in Risk Management: Properties and Pitfalls , 2002 .

[34]  J. Teugels,et al.  Statistics of Extremes , 2004 .

[35]  C. Genest,et al.  A semiparametric estimation procedure of dependence parameters in multivariate families of distributions , 1995 .

[36]  Anthony C. Davison,et al.  Statistics of Extremes , 2015, International Encyclopedia of Statistical Science.

[37]  Liang Peng,et al.  Bootstrap approximation of tail dependence function , 2008 .

[38]  Christian Genest,et al.  On the Ghoudi, Khoudraji, and Rivest test for extreme‐value dependence , 2009 .

[39]  Partial derivatives and confidence intervals of bivariate tail dependence functions , 2007 .

[40]  Liang Peng,et al.  Jackknife empirical likelihood method for copulas , 2012 .

[41]  I. Gijbels,et al.  Improved kernel estimation of copulas: Weak convergence and goodness-of-fit testing , 2009, 0908.4530.

[42]  Johan Segers,et al.  Extreme-value copulas , 2009, 0911.1015.

[43]  Liang Peng,et al.  Smoothed jackknife empirical likelihood method for tail copulas , 2010 .

[44]  Christian Genest,et al.  A nonparametric estimation procedure for bivariate extreme value copulas , 1997 .

[45]  Goodness-of-fit test for tail copulas modeled by elliptical copulas , 2009 .

[46]  J. Segers,et al.  RANK-BASED INFERENCE FOR BIVARIATE EXTREME-VALUE COPULAS , 2007, 0707.4098.

[47]  L. Haan,et al.  Extreme value theory : an introduction , 2006 .

[48]  B. Rémillard,et al.  Goodness-of-fit tests for copulas: A review and a power study , 2006 .

[49]  H. Joe Multivariate models and dependence concepts , 1998 .

[50]  H. Drees,et al.  Best Attainable Rates of Convergence for Estimators of the Stable Tail Dependence Function , 1998 .

[51]  Gunky Kim,et al.  Comparison of semiparametric and parametric methods for estimating copulas , 2007, Comput. Stat. Data Anal..

[52]  Bing-Yi Jing,et al.  Jackknife Empirical Likelihood , 2009 .

[53]  L. Haan,et al.  Parametric tail copula estimation and model testing , 2008 .

[54]  L. Peng,et al.  Weighted estimation of the dependence function for an extreme-value distribution , 2013, 1303.4911.

[55]  Xiaohong Chen,et al.  STATISTICAL INFERENCE FOR MULTIVARIATE RESIDUAL COPULA OF GARCH MODELS , 2009 .

[56]  Liang Peng,et al.  Nonparametric estimation of the dependence function for a multivariate extreme value distribution , 2008 .

[57]  J. Corcoran Modelling Extremal Events for Insurance and Finance , 2002 .

[58]  Johan Segers,et al.  A Method of Moments Estimator of Tail Dependence , 2007 .

[59]  Paul Deheuvels,et al.  On the limiting behavior of the Pickands estimator for bivariate extreme-value distributions , 1991 .

[60]  Jonathan A. Tawn,et al.  Bivariate extreme value theory: Models and estimation , 1988 .

[61]  Paul Embrechts,et al.  Copulas: A Personal View , 2009 .

[62]  Aristidis K. Nikoloulopoulos,et al.  Tail dependence functions and vine copulas , 2010, J. Multivar. Anal..

[63]  L. Haan,et al.  Weighted approximations to tail copula processes with application to testing the extreme value condition , 2006, math/0611370.