Statistical models and methods for dependence in insurance data
暂无分享,去创建一个
[1] Dimension reduction based on extreme dependence , 2010 .
[2] E. J. Gumbel,et al. Statistics of Extremes. , 1960 .
[3] B. Rémillard,et al. Test of independence and randomness based on the empirical copula process , 2004 .
[4] Thorsten Rheinländer. Risk Management: Value at Risk and Beyond , 2003 .
[5] H. Joe. Multivariate extreme value distributions , 1997 .
[6] Xiaotong Shen,et al. Empirical Likelihood , 2002 .
[7] Jian Chen,et al. Empirical likelihood based confidence intervals for copulas , 2009, J. Multivar. Anal..
[8] Andrew J. Patton. Copula-Based Models for Financial Time Series , 2009 .
[9] Kilani Ghoudi,et al. Propriétés statistiques des copules de valeurs extrêmes bidimensionnelles , 1998 .
[10] Thomas Mikosch,et al. Copulas: Tales and facts , 2006 .
[11] Daniel Berg. Copula goodness-of-fit testing: an overview and power comparison , 2009 .
[12] Ludger Rüschendorf,et al. Asymptotic Distributions of Multivariate Rank Order Statistics , 1976 .
[13] N. Kolev,et al. Copulas: A Review and Recent Developments , 2006 .
[14] A. V. D. Vaart,et al. Asymptotic Statistics: U -Statistics , 1998 .
[15] C. Klüppelberg,et al. Peng : Estimating Tail Dependence of Elliptical Distributions , 2007 .
[16] Gernot Müller,et al. Bayesian estimation of Lévy copulas for multivariate operational risks. , 2010 .
[17] Rafael Schmidt,et al. Non‐parametric Estimation of Tail Dependence , 2006 .
[18] Christian Genest,et al. A goodness-of-fit test for bivariate extreme-value copulas , 2011, 1102.2078.
[19] Xiaohong Chen,et al. Efficient Estimation of Semiparametric Multivariate Copula Models Efficient Estimation of Semiparametric Multivariate Copula Models * , 2004 .
[20] Jean‐François Quessy,et al. On a new goodness‐of‐fit process for families of copulas , 2009 .
[21] C. Klüppelberg,et al. Estimating the tail dependence function of an elliptical distribution , 2007 .
[22] M. Wegkamp,et al. Weak Convergence of Empirical Copula Processes , 2004 .
[23] P. Hall,et al. Distribution and dependence-function estimation for bivariate extreme-value distributions , 2000 .
[24] A. V. D. Vaart. Asymptotic Statistics: Delta Method , 1998 .
[25] C. Klüppelberg,et al. Semi‐Parametric Models for the Multivariate Tail Dependence Function – the Asymptotically Dependent Case , 2008 .
[26] Y. Qi. Almost sure convergence of the stable tail empirical dependence function in multivariate extreme statistics , 1997 .
[27] Noël Veraverbeke,et al. Empirical Likelihood for Non‐Smooth Criterion Functions , 2009 .
[28] J. Lawless,et al. Empirical Likelihood and General Estimating Equations , 1994 .
[29] Artem Prokhorov,et al. A Goodness-of-fit Test for Copulas , 2014 .
[30] Richard A. Davis,et al. Handbook of Financial Time Series , 2009 .
[31] Holger Dette,et al. Some comments on goodness-of-fit tests for the parametric form of the copula based on L2-distances , 2010, J. Multivar. Anal..
[32] Claudia Klüppelberg,et al. Parameter estimation of a bivariate compound Poisson process , 2010 .
[33] P. Embrechts,et al. Risk Management: Correlation and Dependence in Risk Management: Properties and Pitfalls , 2002 .
[34] J. Teugels,et al. Statistics of Extremes , 2004 .
[35] C. Genest,et al. A semiparametric estimation procedure of dependence parameters in multivariate families of distributions , 1995 .
[36] Anthony C. Davison,et al. Statistics of Extremes , 2015, International Encyclopedia of Statistical Science.
[37] Liang Peng,et al. Bootstrap approximation of tail dependence function , 2008 .
[38] Christian Genest,et al. On the Ghoudi, Khoudraji, and Rivest test for extreme‐value dependence , 2009 .
[39] Partial derivatives and confidence intervals of bivariate tail dependence functions , 2007 .
[40] Liang Peng,et al. Jackknife empirical likelihood method for copulas , 2012 .
[41] I. Gijbels,et al. Improved kernel estimation of copulas: Weak convergence and goodness-of-fit testing , 2009, 0908.4530.
[42] Johan Segers,et al. Extreme-value copulas , 2009, 0911.1015.
[43] Liang Peng,et al. Smoothed jackknife empirical likelihood method for tail copulas , 2010 .
[44] Christian Genest,et al. A nonparametric estimation procedure for bivariate extreme value copulas , 1997 .
[45] Goodness-of-fit test for tail copulas modeled by elliptical copulas , 2009 .
[46] J. Segers,et al. RANK-BASED INFERENCE FOR BIVARIATE EXTREME-VALUE COPULAS , 2007, 0707.4098.
[47] L. Haan,et al. Extreme value theory : an introduction , 2006 .
[48] B. Rémillard,et al. Goodness-of-fit tests for copulas: A review and a power study , 2006 .
[49] H. Joe. Multivariate models and dependence concepts , 1998 .
[50] H. Drees,et al. Best Attainable Rates of Convergence for Estimators of the Stable Tail Dependence Function , 1998 .
[51] Gunky Kim,et al. Comparison of semiparametric and parametric methods for estimating copulas , 2007, Comput. Stat. Data Anal..
[52] Bing-Yi Jing,et al. Jackknife Empirical Likelihood , 2009 .
[53] L. Haan,et al. Parametric tail copula estimation and model testing , 2008 .
[54] L. Peng,et al. Weighted estimation of the dependence function for an extreme-value distribution , 2013, 1303.4911.
[55] Xiaohong Chen,et al. STATISTICAL INFERENCE FOR MULTIVARIATE RESIDUAL COPULA OF GARCH MODELS , 2009 .
[56] Liang Peng,et al. Nonparametric estimation of the dependence function for a multivariate extreme value distribution , 2008 .
[57] J. Corcoran. Modelling Extremal Events for Insurance and Finance , 2002 .
[58] Johan Segers,et al. A Method of Moments Estimator of Tail Dependence , 2007 .
[59] Paul Deheuvels,et al. On the limiting behavior of the Pickands estimator for bivariate extreme-value distributions , 1991 .
[60] Jonathan A. Tawn,et al. Bivariate extreme value theory: Models and estimation , 1988 .
[61] Paul Embrechts,et al. Copulas: A Personal View , 2009 .
[62] Aristidis K. Nikoloulopoulos,et al. Tail dependence functions and vine copulas , 2010, J. Multivar. Anal..
[63] L. Haan,et al. Weighted approximations to tail copula processes with application to testing the extreme value condition , 2006, math/0611370.