Global identification of nonlinear Hammerstein systems by recursive kernel approach

Abstract In this paper, we discuss identification of Hammerstein systems by the recursive kernel regression estimate. We propose the identification algorithm and study its global convergence and the rate of convergence.

[1]  B. Womack,et al.  Discrete time adaptive control of linear dynamic systems with a two-segment piecewise-linear asymmetric nonlinearity , 1984 .

[2]  A. Krzyżak Identification of discrete Hammerstein systems by the Fourier series regression estimate , 1989 .

[3]  L. Devroye,et al.  On the L1 convergence of kernel estimators of regression functions with applications in discrimination , 1980 .

[4]  Stephen A. Billings,et al.  Identi cation of nonlinear systems-A survey , 1980 .

[5]  Adam Krzyzak,et al.  On estimation of a class of nonlinear systems by the kernel regression estimate , 1990, IEEE Trans. Inf. Theory.

[6]  Stephen P. Banks,et al.  Mathematical theories of nonlinear systems , 1988 .

[7]  George E. P. Box,et al.  Time Series Analysis: Forecasting and Control , 1977 .

[8]  Wlodzimierz Greblicki,et al.  Stochastic approximation in nonparametric identification of Hammerstein systems , 2002, IEEE Trans. Autom. Control..

[9]  M. C. Jones,et al.  Spline Smoothing and Nonparametric Regression. , 1989 .

[10]  S. Billings,et al.  Non-linear system identification using the Hammerstein model , 1979 .

[11]  Adam Krzyzak,et al.  Global convergence of the recursive kernel regression estimates with applications in classification and nonlinear system estimation , 1992, IEEE Trans. Inf. Theory.

[12]  Gary L. Wise,et al.  On the design of nonlinear discrete-time predictors , 1982, IEEE Trans. Inf. Theory.

[13]  K. Narendra,et al.  An iterative method for the identification of nonlinear systems using a Hammerstein model , 1966 .

[14]  W. Greblicki,et al.  Hammerstein system identification by non-parametric regression estimation , 1987 .

[15]  R. Luus,et al.  A noniterative method for identification using Hammerstein model , 1971 .

[16]  Stamatis Cambanis,et al.  Signal identification after noisy nonlinear transformations , 1980, IEEE Trans. Inf. Theory.

[17]  W. Greblicki,et al.  Recursive nonparametric identification of Hammerstein systems , 1989 .

[18]  W. Härdle Applied Nonparametric Regression , 1991 .

[19]  Steven C. Bass,et al.  Adaptive noise cancellation for a class of nonlinear, dynamic reference channels , 1985 .

[20]  Adam Krzyzak,et al.  The rates of convergence of kernel regression estimates and classification rules , 1986, IEEE Trans. Inf. Theory.

[21]  Adam Krzyzak,et al.  A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.

[22]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[23]  H. Müller Nonparametric regression analysis of longitudinal data , 1988 .

[24]  P. Gallman,et al.  An iterative method for the identification of nonlinear systems using a Uryson model , 1975 .

[25]  M. J. Korenberg,et al.  The identification of nonlinear biological systems: Wiener and Hammerstein cascade models , 1986, Biological Cybernetics.

[26]  C. J. Stone,et al.  Optimal Global Rates of Convergence for Nonparametric Regression , 1982 .

[27]  Adam Krzyzak,et al.  Almost everywhere convergence of a recursive regression function estimate and classification , 1984, IEEE Trans. Inf. Theory.

[28]  W. Greblicki,et al.  Identification of discrete Hammerstein systems using kernel regression estimates , 1986 .