Wilson polynomials and the generic superintegrable system on the 2-sphere

For complex two-dimensional Riemannian spaces every classical or quantum second-order superintegrable system can be obtained from a single generic 3-parameter potential on the complex 2-sphere by delicate limit operations and through Stäckel transforms between manifolds. Here we derive families of finite- and infinite-dimensional irreducible representations of the corresponding quadratic quantum algebra for the 2-sphere and point out their role in explaining the degeneracy of the energy eigenspaces corresponding to bound state and continuous spectra of quantum and wave equation analogs of this system. The algebra is exactly the one that describes the Wilson and Racah polynomials in their full generality.

[1]  A. Hinze,et al.  Second order superintegrable systems in conformally flat spaces . 2 : The classical 2 D Stäckel transform , 2009 .

[2]  C. Quesne Quadratic Algebra Approach to an Exactly Solvable Position-Dependent Mass Schr\ , 2007, 0705.2577.

[3]  W. Miller,et al.  Nondegenerate 2D complex Euclidean superintegrable systems and algebraic varieties , 2007, 0708.3044.

[4]  W. Miller,et al.  Nondegenerate superintegrable systems in n-dimensional Euclidean spaces , 2007 .

[5]  W. Miller,et al.  Second order superintegrable systems in conformally flat spaces. IV. The classical 3D Stäckel transform and 3D classification theory , 2006 .

[6]  C. Daskaloyannis,et al.  Unified treatment and classification of superintegrable systems with integrals quadratic in momenta on a two-dimensional manifold , 2004, math-ph/0412055.

[7]  W. Miller,et al.  Second order superintegrable systems in conformally flat spaces. III. Three-dimensional classical structure theory , 2005 .

[8]  W. Miller,et al.  Second order superintegrable systems in conformally flat spaces. II. The classical two-dimensional Stäckel transform , 2005 .

[9]  W. Miller,et al.  Superintegrability in Classical and Quantum Systems , 2004 .

[10]  W. Miller,et al.  Completeness of superintegrability in two-dimensional constant-curvature spaces , 2001, math-ph/0102006.

[11]  C. Daskaloyannis Quadratic Poisson algebras of two-dimensional classical superintegrable systems and quadratic associative algebras of quantum superintegrable systems , 2000, math-ph/0003017.

[12]  W. Miller,et al.  Completeness of multiseparable superintegrability on the complex 2-sphere , 2000 .

[13]  W. Miller,et al.  Completeness of multiseparable superintegrability in E2,C , 2000 .

[14]  W. Miller,et al.  Superintegrability on the two-dimensional hyperboloid. II , 1997, quant-ph/9907037.

[15]  W. Miller,et al.  Superintegrability and associated polynomial solutions: Euclidean space and the sphere in two dimensions , 1996 .

[16]  C. Quesne Generalized deformed parafermions, nonlinear deformations of so(3) and exactly solvable potentials , 1994 .

[17]  K. Kokkotas,et al.  Deformed oscillator algebras for two-dimensional quantum superintegrable systems. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[18]  A. Zhedanov,et al.  Quadratic algebras and dynamics in curved spaces. II. The Kepler problem , 1992 .

[19]  A. Zhedanov,et al.  Quadratic algebras and dynamics in curved spaces. I. Oscillator , 1992 .

[20]  N. Evans Group theory of the Smorodinsky-Winternitz system , 1991 .

[21]  A. Zhedanov “Hidden symmetry” of Askey-Wilson polynomials , 1991 .

[22]  W. Miller,et al.  Hypergeometric expansions of Heun polynomials , 1991 .

[23]  A. Zhedanov,et al.  Quadratic algebra as a 'hidden' symmetry of the Hartmann potential , 1991 .

[24]  C. Daskaloyannis,et al.  Generalized deformed oscillator and nonlinear algebras , 1991 .

[25]  W. Miller,et al.  Families of orthogonal and biorthogonal polynomials on the N -sphere , 1991 .

[26]  N. Evans Super-integrability of the Winternitz system , 1990 .

[27]  Evans,et al.  Superintegrability in classical mechanics. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[28]  A. Barut,et al.  A new realisation of dynamical groups and factorisation method , 1987 .

[29]  J. M. Willard A Note on Wilson Polynomials , 1987 .

[30]  W. Miller,et al.  Sta¨kel equivalent integrable Hamiltonian systems , 1986 .

[31]  E. Kalnins Separation of variables for Riemannian spaces of constant curvature , 1986 .

[32]  G. Pogosyan,et al.  Elliptic basis for a circular oscillator , 1985 .

[33]  G. Pogosyan,et al.  Elliptic basis of circular oscillator , 1985 .

[34]  K. Wolf,et al.  Lie algebras for systems with mixed spectra. I. The scattering Pöschl–Teller potential , 1985 .

[35]  G. Pogosyan,et al.  Interbasis expansions in a circular oscillator , 1985 .

[36]  G. Pogosyan,et al.  HIDDEN SYMMETRY, SEPARATION OF VARIABLES AND INTERBASIS EXPANSIONS IN THE TWO-DIMENSIONAL HYDROGEN ATOM , 1985 .

[37]  B. Dorizzi,et al.  Coupling-Constant Metamorphosis and Duality between Integrable Hamiltonian Systems , 1984 .

[38]  G. Pogosyan,et al.  Two-dimensional hydrogen atom. I. Elliptic basis , 1984 .

[39]  G. Reid,et al.  Separation of variables for complex Riemannian spaces of constant curvature - I. Orthogonal separable coordinates for Snc and Enc , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[40]  S. Wojciechowski Superintegrability of the Calogero-Moser system☆ , 1983 .

[41]  James A. Wilson Some Hypergeometric Orthogonal Polynomials , 1980 .

[42]  W. Miller,et al.  Lie theory and separation of variables. 11. The EPD equation , 1976 .

[43]  W. Miller,et al.  Lie theory and separation of variables. 4. The groups SO (2,1) and SO (3) , 1974 .

[44]  P. Winternitz,et al.  A new basis for the representations of the rotation group. Lamé and Heun polynomials , 1973 .

[45]  F. Calogero Solution of a three-body problem in one-dimension , 1969 .

[46]  H. McIntosh,et al.  Symmetry of the Two‐Dimensional Hydrogen Atom , 1969 .

[47]  B. Viswanathan Generating Functions for Ultraspherical Functions , 1968, Canadian Journal of Mathematics.

[48]  P. Winternitz,et al.  A systematic search for nonrelativistic systems with dynamical symmetries , 1967 .

[49]  Y. Smorodinskii,et al.  SYMMETRY GROUPS IN CLASSICAL AND QUANTUM MECHANICS , 1966 .

[50]  P. Winternitz,et al.  ON HIGHER SYMMETRIES IN QUANTUM MECHANICS , 1965 .