Synthesis of Pegylated Immunonanoparticles

[1]  D. Putnam,et al.  Poly(lactic acid)-poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA. , 2001, Journal of controlled release : official journal of the Controlled Release Society.

[2]  パードリッジ、ウィリアム、エム. Non-invasive gene targeting to the brain , 2001 .

[3]  C Vigneron,et al.  Protein C-loaded monomethoxypoly (ethylene oxide)-poly(lactic acid) nanoparticles. , 2001, International journal of pharmaceutics.

[4]  Masao Kato,et al.  Sugar-Installed Polymer Micelles: Synthesis and Micellization of Poly(ethylene glycol)−Poly(d,l-lactide) Block Copolymers Having Sugar Groups at the PEG Chain End , 1999 .

[5]  S. Stolnik,et al.  COLLOIDAL STABILITY AND DRUG INCORPORATION ASPECTS OF MICELLAR-LIKE PLA-PEG NANOPARTICLES , 1999 .

[6]  D. Bazile,et al.  Comparison of the safety profiles of PLA50 and Me.PEG-PLA50 nanoparticles after single dose intravenous administration to rat , 1999 .

[7]  Ruxandra Gref,et al.  Protein encapsulation within polyethylene glycol-coated nanospheres. I. Physicochemical characterization. , 1998, Journal of biomedical materials research.

[8]  A. Petit,et al.  Protein encapsulation in biodegradable amphiphilic microspheres. I. Polymer synthesis and characterization and microsphere elaboration , 1998 .

[9]  Anderson,et al.  Biodegradation and biocompatibility of PLA and PLGA microspheres. , 1997, Advanced drug delivery reviews.

[10]  J. Huwyler,et al.  Receptor mediated delivery of daunomycin using immunoliposomes: pharmacokinetics and tissue distribution in the rat. , 1997, The Journal of pharmacology and experimental therapeutics.

[11]  Robert Langer,et al.  PEG-coated nanospheres from amphiphilic diblock and multiblock copolymers: Investigation of their drug encapsulation and release characteristics1 , 1997 .

[12]  C. Booth,et al.  Association and surface properties of diblock copolymers of ethylene oxide and DL-lactide in aqueous solution , 1997 .

[13]  J. Huwyler,et al.  Brain drug delivery of small molecules using immunoliposomes. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[14]  R. Müller,et al.  The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. , 1995, Advanced drug delivery reviews.

[15]  Michel Veillard,et al.  Non-stealth (poly(lactic acid/albumin)) and stealth (poly(lactic acid-polyethylene glycol)) nanoparticles as injectable drug carriers , 1995 .

[16]  W. Pardridge,et al.  Vector-mediated delivery of a polyamide ("peptide") nucleic acid analogue through the blood-brain barrier in vivo. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[17]  D. Bazile,et al.  Stealth Me.PEG-PLA nanoparticles avoid uptake by the mononuclear phagocytes system. , 1995, Journal of pharmaceutical sciences.

[18]  W. Pardridge,et al.  Use of neutral avidin improves pharmacokinetics and brain delivery of biotin bound to an avidin-monoclonal antibody conjugate. , 1994, The Journal of pharmacology and experimental therapeutics.

[19]  V. Torchilin,et al.  Biodegradable long-circulating polymeric nanospheres. , 1994, Science.

[20]  W. Pardridge,et al.  Transport of recombinant CD4 through the rat blood-brain barrier in vivo. , 1992, The Journal of pharmacology and experimental therapeutics.

[21]  A. Gabizon,et al.  Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[22]  G. Spenlehauer,et al.  Interactions of poly(lactic acid) and poly(lactic acid-co-ethylene oxide) nanoparticles with the plasma factors of the coagulation system. , 1997, Biomaterials.

[23]  W. Simons The Sadtler handbook of proton NMR spectra , 1978 .