TENT PROPERTY AND DIRECTIONAL LIMIT SETS FOR SELF-JOININGS OF HYPERBOLIC MANIFOLDS

(1) Let Γ = (ρ1 × ρ2)(∆) where ρ1, ρ2 : ∆ → SO (n, 1) are convex cocompact representations of a finitely generated group ∆. We provide a sharp pointwise bound on the growth indicator function ψΓ by a tent function: for any v = (v1, v2) ∈ R , ψΓ(v) ≤ min(v1 dimH Λρ1 , v2 dimH Λρ2). (0.1) We obtain several interesting consequences including the gap and rigidity property on the critical exponent. (2) For each v in the interior of the limit cone of Γ, we prove the following on the v-directional conical limit set Λv ⊂ S n−1 × S : ψΓ(v) max (v1,v2) ≤ dimH Λv ≤ ψΓ(v) min (v1,v2) . We also study the local behavior of the higher rank PattersonSullivan measures on each Λv. (3) Our approach gives an analogous result as (0.1) for any Anosov subgroup of a semisimple Lie group of rank at most 3. For instance, our result implies that ψΓ(diag(t1, · · · , td)) ≤ min1≤i≤d−1(ti − ti+1) for any Hitchin representation Γ < PSL(d,R) with d ≤ 4.

[1]  Pratyush Sarkar,et al.  Local mixing of one-parameter diagonal flows on Anosov homogeneous spaces , 2021 .

[2]  Michael Magee Quantitative spectral gap for thin groups of hyperbolic isometries , 2011, 1112.2004.

[3]  Andr'es Sambarino The orbital counting problem for hyperconvex representations , 2012, 1203.0280.

[4]  Jean-Franccois Quint Mesures de Patterson—Sullivan en rang supérieur , 2002 .

[5]  James W. Anderson,et al.  Algebraic limits of Kleinian groups which rearrange the pages of a book , 1996 .

[6]  Yuval Peres,et al.  Fractals in Probability and Analysis , 2017 .

[7]  K. Corlette Hausdorff dimensions of limit sets I , 1990 .

[8]  Minju M. Lee,et al.  Invariant Measures for Horospherical Actions and Anosov Groups , 2020, International Mathematics Research Notices.

[9]  R. Potrie,et al.  Eigenvalues and entropy of a Hitchin representation , 2014, Inventiones mathematicae.

[10]  D. Sullivan Related aspects of positivity in Riemannian geometry , 1987 .

[11]  Minju M. Lee,et al.  Anosov groups: local mixing, counting and equidistribution , 2020, Geometry &amp; Topology.

[12]  Representation theoretic rigidity in PSL (2,R) , 1993 .

[13]  Y. Benoist Propriétés Asymptotiques des Groupes Linéaires , 1997 .

[14]  M. B. Pozzetti,et al.  Conformality for a robust class of non-conformal attractors , 2019, 1902.01303.

[15]  A. Marden Hyperbolic Manifolds: An Introduction in 2 and 3 Dimensions , 2016 .

[16]  A. Sambarino Infinitesimal Zariski closures of positive representations , 2020, 2012.10276.

[17]  D. Sullivan The density at infinity of a discrete group of hyperbolic motions , 1979 .

[18]  Andr'es Sambarino,et al.  The pressure metric for Anosov representations , 2013, 1301.7459.

[19]  Minju Lee,et al.  The Hopf-Tsuji-Sullivan dichotomy in higher rank and applications to Anosov subgroups , 2021 .

[20]  S. Patterson The limit set of a Fuchsian group , 1976 .

[21]  Andr'es Sambarino,et al.  Hyperconvex representations and exponential growth , 2012, Ergodic Theory and Dynamical Systems.

[22]  Jean-Franccois Quint Divergence exponentielle des sous-groupes discrets en rang supérieur , 2002 .

[23]  Hausdorff dimension of limit sets for projective Anosov representations , 2019, 1902.01844.

[25]  Anosov representations: domains of discontinuity and applications , 2011, 1108.0733.

[26]  Fanny Kassel,et al.  Maximally stretched laminations on geometrically finite hyperbolic manifolds , 2013, 1307.0250.

[27]  Harrison Bray,et al.  Counting, equidistribution and entropy gaps at infinity with applications to cusped Hitchin representations , 2021 .