Estimating the Parameters of a Small Open Economy DSGE Model: Identifiability and Inferential Validity

This paper estimates the parameters of a stylized dynamic stochastic general equilibrium model using maximum likelihood and Bayesian methods, paying special attention to the issue of weak parameter identification. Given the model and the available data, the posterior estimates of the weakly identified parameters are very sensitive to the choice of priors. We provide a set of tools to diagnose weak identification, which include surface plots of the log-likelihood as a function of two parameters, heat plots of the log-likelihood as a function of three parameters, Monte Carlo simulations using artificial data, and Bayesian estimation using three sets of priors. We find that the policy coefficients and the parameter governing the elasticity of labor supply are weakly identified by the data, and posterior predictive distributions remind us that DSGE models may make poor forecasts even when they fit the data well. Although parameter identification is model- and data-specific, the lack of identification of some key structural parameters in a small-scale DSGE model such as the one we examine should raise a red flag to researchers trying to estimate - and draw valid inferences from - large-scale models featuring many more parameters.

[1]  Andrew T. Levin,et al.  INFLATION PERSISTENCE IN THE EURO AREA : PRELIMINARY SUMMARY OF FINDINGS , 2004 .

[2]  Francisco J. Ruge-Murcia,et al.  Methods to Estimate Dynamic Stochastic General Equilibrium Models , 2007 .

[3]  Tommaso Monacelli,et al.  Monetary Policy in a Low Pass-Through Environment , 2003, SSRN Electronic Journal.

[4]  John C. Ham,et al.  Using Micro Data to Estimate the Intertemporal Substitution Elasticity for Labor Supply in an Implicit Contract Model , 2006 .

[5]  Scott L. Baier,et al.  The growth of world trade: tariffs, transport costs, and income similarity , 2001 .

[6]  P. Levine,et al.  Robust Inflation-Forecast-Based Rules to Shield against Indeterminacy , 2006 .

[7]  Alexei Onatski,et al.  ROBUST MONETARY POLICY UNDER MODEL UNCERTAINTY IN A SMALL MODEL OF THE U.S. ECONOMY , 1998, Macroeconomic Dynamics.

[8]  Dale J. Poirier,et al.  REVISING BELIEFS IN NONIDENTIFIED MODELS , 1998, Econometric Theory.

[9]  Mario J. Crucini,et al.  Business Cycles and the Asset Structure of Foreign Trade , 1994 .

[10]  Jeffrey C. Fuhrer Habit Formation in Consumption and Its Implications for Monetary Policy Models , 2000 .

[11]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 2. The New Algorithm , 1970 .

[12]  Daniel O. Beltran Model uncertainty and the design of robust monetary policy rules in a small open economy: A Bayesian approach , 2007 .

[13]  R. Farmer,et al.  On the Indeterminacy of New-Keynesian Economics , 2004, SSRN Electronic Journal.

[14]  Patrick J. Kehoe,et al.  International Real Business Cycles , 1992, Journal of Political Economy.

[15]  Ruud A. De Mooij,et al.  What Explains the Variation in Estimates of Labour Supply Elasticities? , 2005, SSRN Electronic Journal.

[16]  Christian Volpe Martincus,et al.  www.econstor.eu Zentrum für Europäische Integrationsforschung Center for European Integration Studies , 2009 .

[17]  F. Smets,et al.  An estimated dynamic stochastic general equilibrium model of the euro area. NBB Working Paper Nr. 35 , 2002 .

[18]  F. Ruge-Murcia,et al.  The Transmission of Monetary Policy in a Multisector Economy , 2009 .

[19]  R. Stern,et al.  Price elasticities in international trade : an annotated bibliography , 1976 .

[20]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[21]  Crei,et al.  Monetary Policy and Exchange Rate Volatility in a Small Open Economy , 2002 .

[22]  C. Sims Solving Linear Rational Expectations Models , 2002 .

[23]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .

[24]  D. Shanno Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .

[25]  J. Galí,et al.  Monetary Policy Rules in Practice: Some International Evidence , 1997 .

[26]  F. Smets,et al.  Shocks and Frictions in US Business Cycles: A Bayesian DSGE Approach , 2007 .

[27]  D. Goldfarb A family of variable-metric methods derived by variational means , 1970 .

[28]  Trade Liberalization among Major World Trading Areas , 1984 .

[29]  Lawrence J. Christiano,et al.  Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy , 2001, Journal of Political Economy.

[30]  John B. Taylor Discretion versus policy rules in practice , 1993 .

[31]  Joseph W. Gruber Productivity Shocks, Habits, and the Current Account , 2002 .

[32]  S. Gerlach,et al.  The Taylor Rule and Interest Rates in the EMU Area , 2000 .

[33]  Fabio Canova,et al.  Back to Square One: Identification Issues in DSGE Models , 2009, SSRN Electronic Journal.

[34]  David Hummels,et al.  Toward a Geography of Trade Costs , 1999, GTAP Working Paper.

[35]  D. Draper Bayesian Multilevel Analysis and MCMC , 2008 .

[36]  J. Harrigan OECD imports and trade barriers in 1983 , 1993 .

[37]  Claude J. P. Bélisle Convergence theorems for a class of simulated annealing algorithms on ℝd , 1992 .

[38]  Frank Schorfheide,et al.  A Bayesian Look at New Open Economy Macroeconomics , 2005, NBER Macroeconomics Annual.

[39]  Andrew T. Levin,et al.  NBER WORKING PAPER SERIES MONETARY POLICY UNDER UNCERTAINTY IN MICRO-FOUNDED MACROECONOMETRIC MODELS , 2005 .

[40]  Alan V. Deardorff,et al.  Computational Analysis of Global Trading Arrangements , 1991 .

[41]  Larry G. Epstein,et al.  Substitution, Risk Aversion, and the Temporal Behavior of Consumption and Asset Returns: A Theoretical Framework , 1989 .

[42]  R. Fletcher,et al.  A New Approach to Variable Metric Algorithms , 1970, Comput. J..

[43]  K. Arrow Essays in the theory of risk-bearing , 1958 .

[44]  P. Ireland Endogenous Money or Sticky Prices? , 2002 .

[45]  Giovanni Veronese,et al.  Price Setting in the Euro Area: Some Stylized Facts from Individual Consumer Price Data , 2005, SSRN Electronic Journal.

[46]  Andrew Gelman,et al.  General methods for monitoring convergence of iterative simulations , 1998 .