Eye movements in natural behavior

[1]  Jonathan D. Cohen,et al.  Computational roles for dopamine in behavioural control , 2004, Nature.

[2]  P. Glimcher,et al.  Activity in Posterior Parietal Cortex Is Correlated with the Relative Subjective Desirability of Action , 2004, Neuron.

[3]  W. Newsome,et al.  Matching Behavior and the Representation of Value in the Parietal Cortex , 2004, Science.

[4]  Peter Dayan,et al.  Temporal difference models describe higher-order learning in humans , 2004, Nature.

[5]  Jeff B. Pelz,et al.  Head movement estimation for wearable eye tracker , 2004, ETRA.

[6]  Jeff B. Pelz,et al.  Building a lightweight eyetracking headgear , 2004, ETRA.

[7]  L. Chalupa,et al.  The visual neurosciences , 2004 .

[8]  Dana H. Ballard,et al.  Eye Movements for Reward Maximization , 2003, NIPS.

[9]  P. Glimcher The neurobiology of visual-saccadic decision making. , 2003, Annual review of neuroscience.

[10]  Antonio Torralba,et al.  Top-down control of visual attention in object detection , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[11]  O. Hikosaka,et al.  Neural Correlates of Rewarded and Unrewarded Eye Movements in the Primate Caudate Nucleus , 2003, The Journal of Neuroscience.

[12]  M. Land Eye Movements in Daily Life , 2003 .

[13]  J. Henderson Human gaze control during real-world scene perception , 2003, Trends in Cognitive Sciences.

[14]  H. Deubel,et al.  Attention, saccade programming, and the timing of eye-movement control , 2003, Behavioral and Brain Sciences.

[15]  H. Pashler,et al.  Dual-task interference with equal task emphasis: Graded capacity sharing or central postponement? , 2003, Perception & psychophysics.

[16]  Michael S Landy,et al.  Statistical decision theory and the selection of rapid, goal-directed movements. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[17]  K. Turano,et al.  Oculomotor strategies for the direction of gaze tested with a real-world activity , 2003, Vision Research.

[18]  Mary M Hayhoe,et al.  Visual memory and motor planning in a natural task. , 2003, Journal of vision.

[19]  D. Ballard,et al.  What you see is what you need. , 2003, Journal of vision.

[20]  Kenji Doya,et al.  Metalearning and neuromodulation , 2002, Neural Networks.

[21]  Derrick J. Parkhurst,et al.  Modeling the role of salience in the allocation of overt visual attention , 2002, Vision Research.

[22]  M. Hayhoe,et al.  In what ways do eye movements contribute to everyday activities? , 2001, Vision Research.

[23]  J. Pelz,et al.  Oculomotor behavior and perceptual strategies in complex tasks , 2001, Vision Research.

[24]  M. Hayhoe,et al.  What controls attention in natural environments? , 2001, Vision Research.

[25]  C. Gilbert,et al.  The Neural Basis of Perceptual Learning , 2001, Neuron.

[26]  R. Johansson,et al.  Eye–Hand Coordination in Object Manipulation , 2001, The Journal of Neuroscience.

[27]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[28]  E. Miller,et al.  An integrative theory of prefrontal cortex function. , 2001, Annual review of neuroscience.

[29]  J. Schall,et al.  Performance monitoring by the supplementary eye ® eld , 2000 .

[30]  Michael F. Land,et al.  From eye movements to actions: how batsmen hit the ball , 2000, Nature Neuroscience.

[31]  W. Schultz Multiple reward signals in the brain , 2000, Nature Reviews Neuroscience.

[32]  O. Hikosaka,et al.  Role of the basal ganglia in the control of purposive saccadic eye movements. , 2000, Physiological reviews.

[33]  Jeff B. Pelz,et al.  Portable eyetracking: a study of natural eye movements , 2000, Electronic Imaging.

[34]  Victor A. F. Lamme,et al.  The implementation of visual routines , 2000, Vision Research.

[35]  M. Hayhoe Vision Using Routines: A Functional Account of Vision , 2000 .

[36]  S. Liversedge,et al.  Saccadic eye movements and cognition , 2000, Trends in Cognitive Sciences.

[37]  Jan Theeuwes,et al.  Attentional capture and oculomotor control , 2000 .

[38]  Michael L. Platt,et al.  Neural correlates of decision variables in parietal cortex , 1999, Nature.

[39]  M. Land,et al.  The Roles of Vision and Eye Movements in the Control of Activities of Daily Living , 1998, Perception.

[40]  Christof Koch,et al.  Attentional capacity is undifferentiated: Concurrent discrimination of form, color, and motion , 1999, Perception & psychophysics.

[41]  E. Miller,et al.  Neural Activity in the Primate Prefrontal Cortex during Associative Learning , 1998, Neuron.

[42]  Andrew G. Barto,et al.  Reinforcement learning , 1998 .

[43]  M. A. Basso,et al.  Modulation of Neuronal Activity in Superior Colliculus by Changes in Target Probability , 1998, The Journal of Neuroscience.

[44]  O. Hikosaka,et al.  Expectation of reward modulates cognitive signals in the basal ganglia , 1998, Nature Neuroscience.

[45]  M Corbetta,et al.  Frontoparietal cortical networks for directing attention and the eye to visual locations: identical, independent, or overlapping neural systems? , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Dana H. Ballard,et al.  Visual routines for autonomous driving , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[47]  D. Ballard,et al.  Task constraints in visual working memory , 1997, Vision Research.

[48]  M. Pickering,et al.  Eye guidance in reading and scene perception , 1998 .

[49]  M F Land,et al.  The knowledge base of the oculomotor system. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[50]  D. S. Wooding,et al.  Fixation Patterns Made during Brief Examination of Two-Dimensional Images , 1997, Perception.

[51]  Rajesh P. N. Rao,et al.  Embodiment is the foundation, not a level , 1996, Behavioral and Brain Sciences.

[52]  Mark Humphreys,et al.  Action selection methods using reinforcement learning , 1997 .

[53]  H. Collewijn,et al.  The function of visual search and memory in sequential looking tasks , 1995, Vision Research.

[54]  Michael J. Swain,et al.  An Architecture for Vision and Action , 1995, IJCAI.

[55]  David P. Miller,et al.  Experiences with an architecture for intelligent, reactive agents , 1995, J. Exp. Theor. Artif. Intell..

[56]  Demetri Terzopoulos,et al.  Animat vision: Active vision in artificial animals , 1995, Proceedings of IEEE International Conference on Computer Vision.

[57]  D. Ballard,et al.  Memory Representations in Natural Tasks , 1995, Journal of Cognitive Neuroscience.

[58]  David N. Lee,et al.  Where we look when we steer , 1994, Nature.

[59]  Ralph Hartley,et al.  Experiments with the subsumption architecture , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[60]  Dana H. Ballard,et al.  Animate Vision--An Evolutionary Step in Computational Vision (視覚と画像工学--見る・見せる ) -- (コンピュ-タビジョンの新しい流れ) , 1991 .

[61]  Eileen Kowler The role of visual and cognitive processes in the control of eye movement. , 1990, Reviews of oculomotor research.

[62]  Eileen Kowler Eye movements and their role in visual and cognitive processes. , 1990, Reviews of oculomotor research.

[63]  Eileen Kowler,et al.  The role of location probability in the programming of saccades: Implications for “center-of-gravity” tendencies , 1989, Vision Research.

[64]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[65]  S. Ullman Visual routines , 1984, Cognition.

[66]  A. L. I︠A︡rbus Eye Movements and Vision , 1967 .

[67]  A. L. Yarbus,et al.  Eye Movements and Vision , 1967, Springer US.

[68]  R. K. Simpson Nature Neuroscience , 2022 .