Orientation-Enhanced Parallel Coordinate Plots

Parallel Coordinate Plots (PCPs) is one of the most powerful techniques for the visualization of multivariate data. However, for large datasets, the representation suffers from clutter due to overplotting. In this case, discerning the underlying data information and selecting specific interesting patterns can become difficult. We propose a new and simple technique to improve the display of PCPs by emphasizing the underlying data structure. Our Orientation-enhanced Parallel Coordinate Plots (OPCPs) improve pattern and outlier discernibility by visually enhancing parts of each PCP polyline with respect to its slope. This enhancement also allows us to introduce a novel and efficient selection method, the Orientation-enhanced Brushing (O-Brushing). Our solution is particularly useful when multiple patterns are present or when the view on certain patterns is obstructed by noise. We present the results of our approach with several synthetic and real-world datasets. Finally, we conducted a user evaluation, which verifies the advantages of the OPCPs in terms of discernibility of information in complex data. It also confirms that O-Brushing eases the selection of data patterns in PCPs and reduces the amount of necessary user interactions compared to state-of-the-art brushing techniques.

[1]  Matthew O. Ward,et al.  High Dimensional Brushing for Interactive Exploration of Multivariate Data , 1995, Proceedings Visualization '95.

[2]  Steven Franconeri,et al.  Ranking Visualizations of Correlation Using Weber's Law , 2014, IEEE Transactions on Visualization and Computer Graphics.

[3]  Stefan Berchtold,et al.  Similarity clustering of dimensions for an enhanced visualization of multidimensional data , 1998, Proceedings IEEE Symposium on Information Visualization (Cat. No.98TB100258).

[4]  G. Santucci,et al.  SpringView: cooperation of radviz and parallel coordinates for view optimization and clutter reduction , 2005, Coordinated and Multiple Views in Exploratory Visualization (CMV'05).

[5]  Martin Graham,et al.  Using curves to enhance parallel coordinate visualisations , 2003, Proceedings on Seventh International Conference on Information Visualization, 2003. IV 2003..

[6]  Alan J. Dix,et al.  Enabling Automatic Clutter Reduction in Parallel Coordinate Plots , 2006, IEEE Transactions on Visualization and Computer Graphics.

[7]  Matthew O. Ward,et al.  Clutter Reduction in Multi-Dimensional Data Visualization Using Dimension Reordering , 2004, IEEE Symposium on Information Visualization.

[8]  Penny Rheingans Task-based color scale design , 2000, Applied Imaging Pattern Recognition.

[9]  Klaus Mueller,et al.  Eurographics/ Ieee-vgtc Symposium on Visualization 2008 Illustrative Parallel Coordinates , 2022 .

[10]  Helwig Hauser,et al.  Outlier-Preserving Focus+Context Visualization in Parallel Coordinates , 2006, IEEE Transactions on Visualization and Computer Graphics.

[11]  Matthias Zwicker,et al.  Ieee Transactions on Visualization and Computer Graphics Ewa Splatting , 2002 .

[12]  Pak Chung Wong,et al.  Multiresolution multidimensional wavelet brushing , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[13]  Daniel Weiskopf,et al.  State of the Art of Parallel Coordinates , 2013, Eurographics.

[14]  Tom Duff,et al.  Compositing digital images , 1984, SIGGRAPH.

[15]  Chris Volinsky,et al.  Parallel coordinates for exploratory modelling analysis , 2003, Comput. Stat. Data Anal..

[16]  M. Sheelagh T. Carpendale,et al.  Empirical Studies in Information Visualization: Seven Scenarios , 2012, IEEE Transactions on Visualization and Computer Graphics.

[17]  E. Wegman Hyperdimensional Data Analysis Using Parallel Coordinates , 1990 .

[18]  Haim Levkowitz,et al.  Uncovering Clusters in Crowded Parallel Coordinates Visualizations , 2004, IEEE Symposium on Information Visualization.

[19]  M. Sheelagh T. Carpendale,et al.  Edgelens: an interactive method for managing edge congestion in graphs , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).

[20]  Alan J. Dix,et al.  A Taxonomy of Clutter Reduction for Information Visualisation , 2007, IEEE Transactions on Visualization and Computer Graphics.

[21]  Harri Siirtola Direct manipulation of parallel coordinates , 2000, CHI Extended Abstracts.

[22]  Hong Zhou,et al.  Splatting the Lines in Parallel Coordinates , 2009, Comput. Graph. Forum.

[23]  Holger Theisel Higher Order Parallel Coordinates , 2000, VMV.

[24]  Wilhelm Burger,et al.  Digital Image Processing - An Algorithmic Introduction using Java , 2008, Texts in Computer Science.

[25]  M. Ward CREATING AND MANIPULATING N-DIMENSIONAL BRUSHES , 1997 .

[26]  Matthew O. Ward,et al.  Interactive hierarchical dimension ordering, spacing and filtering for exploration of high dimensional datasets , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).

[27]  Dieter W. Fellner,et al.  PCDC - On the Highway to Data - A Tool for the Fast Generation of Large Synthetic Data Sets , 2012, EuroVA@EuroVis.

[28]  S. Johansson,et al.  Interactive Dimensionality Reduction Through User-defined Combinations of Quality Metrics , 2009, IEEE Transactions on Visualization and Computer Graphics.

[29]  Alfred Inselberg,et al.  The plane with parallel coordinates , 1985, The Visual Computer.

[30]  D. F. Andrews,et al.  PLOTS OF HIGH-DIMENSIONAL DATA , 1972 .

[31]  Alfred Inselberg,et al.  Parallel Coordinates: Visual Multidimensional Geometry and Its Applications , 2003, KDIR.

[32]  Matthew O. Ward,et al.  XmdvTool: integrating multiple methods for visualizing multivariate data , 1994, Proceedings Visualization '94.

[33]  Helwig Hauser,et al.  Angular brushing of extended parallel coordinates , 2002, IEEE Symposium on Information Visualization, 2002. INFOVIS 2002..

[34]  Catherine B. Hurley,et al.  Pairwise Display of High-Dimensional Information via Eulerian Tours and Hamiltonian Decompositions , 2010 .

[35]  Matthew O. Ward,et al.  Hierarchical parallel coordinates for exploration of large datasets , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[36]  Jarke J. van Wijk,et al.  Eurographics/ieee-vgtc Symposium on Visualization 2010 Evaluation of Cluster Identification Performance for Different Pcp Variants , 2022 .

[37]  Jonathan C. Roberts,et al.  Angular Histograms: Frequency-Based Visualizations for Large, High Dimensional Data , 2011, IEEE Transactions on Visualization and Computer Graphics.

[38]  William K. Pratt,et al.  Digital image processing, 2nd Edition , 1991, A Wiley-Interscience publication.

[39]  Harri Siirtola,et al.  Interacting with parallel coordinates , 2006, Interact. Comput..

[40]  E. Fanea,et al.  An interactive 3D integration of parallel coordinates and star glyphs , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[41]  Hong Zhou,et al.  Scattering Points in Parallel Coordinates , 2009, IEEE Transactions on Visualization and Computer Graphics.

[42]  Bernhard Preim,et al.  A Four‐level Focus+Context Approach to Interactive Visual Analysis of Temporal Features in Large Scientific Data , 2008, Comput. Graph. Forum.

[43]  Hong Zhou,et al.  Visual Clustering in Parallel Coordinates , 2008, Comput. Graph. Forum.

[44]  M. Cooper,et al.  Revealing structure within clustered parallel coordinates displays , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..