Hall Effect and Resistivity in Epitaxial MnSi Thin Films Under Ambient and High Pressure

Thin film MnSi has been epitaxially grown on Si(111) substrate and investigated in terms of magnetoresistance and Hall measurements under applied hydrostatic pressure up to 2.58 GPa. Although the behavior of the thin films is qualitatively similar to bulk material, at a high pressure above 2 GPa, an additional magnetic ordering occurs, resulting in a reduction of the potential scattering by spin fluctuations. This ordering is stabilized at the applied pressure showing visible effects in the magnetotransport data. Comparing the behavior of thin films with the bulk material under pressure, it seems quite likely that this additional ordering is of skyrmionic nature, which has as yet not been unambiguously evidenced in epitaxial B20 thin films on a substrate under ambient pressure.

[1]  S. Takada Resistive Anomalies at Magnetic Critical Points , 1971 .

[2]  T. Sakakibara,et al.  Magnetization and Magnetoresistance of MnSi. II , 1982 .

[3]  M. Eremets,et al.  Nonmagnetic indenter-type high-pressure cell for magnetic measurements. , 2007, The Review of scientific instruments.

[4]  P. Böni,et al.  Skyrmion Lattice in a Chiral Magnet , 2009, Science.

[5]  P. Böni,et al.  Topological Hall effect in the A phase of MnSi. , 2009, Physical review letters.

[6]  Y. Tokura,et al.  Real-space observation of a two-dimensional skyrmion crystal , 2010, Nature.

[7]  E. Karhu,et al.  Structure and magnetic properties of MnSi epitaxial thin films , 2010 .

[8]  U. Rößler,et al.  Stabilization of skyrmion textures by uniaxial distortions in noncentrosymmetric cubic helimagnets , 2009, 0904.4842.

[9]  E. Karhu,et al.  Helical magnetic order in MnSi thin films , 2011 .

[10]  U. Rößler,et al.  Extended elliptic skyrmion gratings in epitaxial MnSi thin films , 2012, 1210.1440.

[11]  U. Rößler,et al.  Chiral modulations and reorientation effects in MnSi thin films , 2012 .

[12]  D. Menzel,et al.  Spin–Spin Correlation Length in MnSi Thin Films , 2012 .

[13]  D. Menzel,et al.  Enhanced critical fields in MnSi thin films , 2013 .

[14]  C. Pfleiderer,et al.  Giant generic topological Hall resistivity of MnSi under pressure , 2013, 1404.3734.

[15]  Y. Tokura,et al.  Robust formation of Skyrmions and topological Hall effect anomaly in epitaxial thin films of MnSi. , 2012, Physical review letters.

[16]  Song Jin,et al.  A general method to measure the Hall effect in nanowires: examples of FeS2 and MnSi. , 2013, Nano letters.

[17]  E. Karhu,et al.  Discrete helicoidal states in chiral magnetic thin films , 2013, 1305.5196.

[18]  Y. Tokura,et al.  Stability of two-dimensional skyrmions in thin films of Mn1−xFexSi investigated by the topological Hall effect , 2014 .

[19]  D. Menzel,et al.  Suppressed magnetic order and non-Fermi-liquid behavior in MnSi thin films under hydrostatic pressure , 2014 .

[20]  J. C. Loudon,et al.  Hall effect and transmission electron microscopy of epitaxial MnSi thin films , 2014 .

[21]  Mark L. Vousden,et al.  Skyrmions in thin films with easy-plane magnetocrystalline anisotropy , 2016, 1602.02064.

[22]  S. Blundell,et al.  Transverse field muon-spin rotation measurement of the topological anomaly in a thin film of MnSi , 2015, 1511.04972.

[23]  M. Randeria,et al.  Skyrmions in chiral magnets with Rashba and Dresselhaus spin-orbit coupling , 2015, 1509.07508.

[24]  Yan Zhou,et al.  Skyrmion-Electronics: An Overview and Outlook , 2016, Proceedings of the IEEE.

[25]  P. Krzysteczko,et al.  MnSi nanostructures obtained from epitaxially grown thin films: magnetotransport and Hall effect , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.