The History of the Development and Genesis of Works on Adaptive Optics at the Institute of Atmospheric Optics

Abstract A survey of the development of adaptive optics, its methods, and tools for the elimination of irregular distortions appearing in the process of light propagation in an inhomogeneous medium is presented. Many ideas developed in recent years were put forward rather long ago; however, only now, owing to creation of state-of-the-art hardware components of optoelectronic systems and devices, they begin to be included in the widest fields of science and technology. The work also presents the current status of adaptive optics systems in solar astronomy, as well as some aspects of their use in systems correcting distortions of powerful laser systems. A retrospective analysis of investigations in the V.E. Zuev Institute of Atmospheric Optics in relation to adaptive optics is carried out.

[1]  Vladimir P. Lukin,et al.  Four-dimensional computer dynamic model of an atmospheric optical system , 1994, Defense, Security, and Sensing.

[2]  V. Lukin,et al.  Optical wave phase fluctuations. , 1981, Applied optics.

[3]  Vladimir P. Lukin,et al.  Development of Components for Adaptive Optics Systems for Solar Telescopes , 2018 .

[4]  Vladimir P. Lukin,et al.  ARTICLES: Mode correction for turbulent distortions of optical waves , 1986 .

[5]  Vladimir P. Lukin,et al.  Residual tip-tilt motion of LGS in monostatic scheme , 2010, Other Conferences.

[6]  V. P. Lukin,et al.  Methods of image correction formed on horizontal long paths , 2018, Photonics Europe.

[7]  V. Nosov,et al.  Atmospheric coherent turbulence , 2013 .

[8]  N. N. Botugina,et al.  Development of adaptive optics elements for solar telescope , 2012, Other Conferences.

[9]  Philip R. Goode,et al.  High-Spatial-Resolution Imaging Combining High-Order Adaptive Optics, Frame Selection, and Speckle Masking Reconstruction , 2005 .

[10]  P A Konyaev,et al.  Computational algorithms for simulations in atmospheric optics. , 2016, Applied optics.

[11]  Vladimir P. Lukin Comparative characteristics of some correction algorithms , 1981 .

[12]  J. W. Hardy,et al.  Active optics: A new technology for the control of light , 1978, Proceedings of the IEEE.

[13]  Vladimir P. Lukin,et al.  Phase fluctuations of optical waves propagating in a turbulent atmosphere , 1975 .

[14]  Thomas R. Rimmele,et al.  Recent advances in solar adaptive optics , 2004, SPIE Astronomical Telescopes + Instrumentation.

[15]  Vladimir P. Lukin,et al.  Adaptive optics system for solar telescope operating under strong atmospheric turbulence , 2017 .

[16]  David L. Fried,et al.  Statistics of a Geometric Representation of Wavefront Distortion: Errata , 1965 .

[17]  David L. Fried,et al.  Power spectra requirements for wave-front-compensative systems* , 1976 .

[18]  Feodor Kanev Optimization of a flexible mirror in the problem of compensation of laser beams thermal blooming , 1993, International Commission for Optics.

[19]  C. Kuckein,et al.  Image Quality in High-resolution and High-cadence Solar Imaging , 2018 .

[20]  O. von der Lühe,et al.  Solar adaptive optics , 1991 .

[21]  Julien Borgnino,et al.  Determination of Fried's parameter r0 prediction for the observed r.m.s. contrast in solar granulation , 1981 .

[22]  D. Bonaccini Calia,et al.  AO with LGS and mesospheric layer sensing , 2008, Astronomical Telescopes + Instrumentation.

[23]  Vladimir P. Lukin Investigation of some peculiarities in the structure of large-scale atmospheric turbulence , 1994, Astronomical Telescopes and Instrumentation.

[24]  Darryl P. Greenwood,et al.  Bandwidth specification for adaptive optics systems , 1977 .

[25]  Vladimir P. Lukin Correction of random angular displacements of optical beams , 1980 .

[26]  R. B. Dunn,et al.  Solar feature correlation tracker for ground-based telescopes , 1989 .

[27]  J. Strohbehn Laser beam propagation in the atmosphere , 1978 .

[28]  Vladimir P. Lukin BRIEF COMMUNICATIONS: Efficiency of the compensation of phase distortions of optical waves , 1977 .

[29]  Vladimir P. Lukin,et al.  Structure function of temperature fluctuations in coherent turbulence , 2009, Atmospheric and Ocean Optics.

[30]  Horace W. Babcock,et al.  THE POSSIBILITY OF COMPENSATING ASTRONOMICAL SEEING , 1953 .

[31]  Vladimir P. Lukin,et al.  Propagation of modulated waves in a turbulent atmosphere , 1978 .

[32]  A. E. Lukin,et al.  BRIEF COMMUNICATIONS: Continuous-wave lasing of YAG:Nd3+ with an output power of 500 W , 1986 .

[33]  J. R. Morris,et al.  Time-dependent propagation of high energy laser beams through the atmosphere , 1976 .

[34]  Vladimir P. Lukin,et al.  Dynamic characteristics of adaptive optical systems , 1985 .

[35]  Vladimir P. Lukin,et al.  Peculiarities of forestalling correction of the turbulent distortions according to measurements of the Shack-Hartmann sensor , 2011 .

[36]  Vladimir P. Lukin,et al.  Adaptive correction of images , 1983 .

[37]  John W. Hardy Adaptive optics for solar telescopes. , 1987 .

[38]  V. V. Lavrinov,et al.  Method of calculating the cross-wind speed at the entrance aperture of an adaptive system based on Shack–Hartmann wavefront sensor measurements , 2015 .

[39]  V. P. Lukin,et al.  Laser guide stars and models of atmospheric turbulence , 2008, Remote Sensing.

[40]  Vladimir P. Lukin,et al.  Adaptive optical system for a ground-based solar telescope , 2006 .

[41]  Vladimir P. Lukin,et al.  Semiempirical hypotheses of the turbulence theory in anisotropic boundary layer , 2004, Atmospheric and Ocean Optics.

[42]  V P Lukin,et al.  Causes of non-Kolmogorov turbulence in the atmosphere. , 2016, Applied optics.

[43]  Vladimir P. Lukin,et al.  Path-averaged differential meter of atmospheric turbulence parameters , 2010 .

[44]  Vladimir P. Lukin,et al.  NONLINEAR OPTICAL EFFECTS AND DEVICES: Focusing of a high-power laser beam in the course of thermal self-interaction in a moving medium , 1988 .

[45]  Vladimir P. Lukin,et al.  Correction of angular displacements of optical beams , 1982 .

[46]  S. A. Collins Lens-System Diffraction Integral Written in Terms of Matrix Optics , 1970 .

[47]  D. S. Acton,et al.  Solar imaging with a segmented adaptive mirror. , 1992, Applied optics.

[48]  V. P. Lukin,et al.  Thermal distortions of focused laser beams in the atmosphere. , 1985 .

[49]  Vladimir P. Lukin,et al.  Image quality analyzer , 2012, Other Conferences.

[50]  Vladimir P. Lukin,et al.  Effect of underlying terrain on jitter of astronomic images , 2004, SPIE Astronomical Telescopes + Instrumentation.

[51]  R. Buckley,et al.  Diffraction by a random phase-changing screen: A numerical experiment , 1975 .

[52]  Vladimir P Lukin,et al.  ARTICLES: Reciprocity principle and adaptive control of optical radiation parameters , 1982 .

[53]  A. Labeyrie Attainment of diffraction limited resolution in large telescopes by Fourier analysing speckle patterns in star images , 1970 .

[54]  Vladimir P. Lukin,et al.  Estimation of turbulent degradation and required spatial resolution of adaptive systems , 1998, Remote Sensing.

[55]  Vladimir P. Lukin Optical measurements of the outer scale of the atmospheric turbulence , 1993, Defense, Security, and Sensing.

[56]  Vladimir P. Lukin,et al.  Astroclimate parameters of the surface layer in the Sayan Solar Observatory , 2009, Atmospheric and Ocean Optics.

[57]  Vladimir P. Lukin,et al.  The Efficient Outer Scale of Atmospheric Turbulence , 1999 .

[58]  D. Fried Limiting Resolution Looking Down Through the Atmosphere , 1966 .

[59]  O. N. Emaleev,et al.  Applicability of adaptive optics for solar telescopes , 2009 .

[60]  Vladimir P. Lukin,et al.  Ground-based spatial interferometers and atmospheric turbulence , 1996 .

[61]  Vladimir P. Lukin,et al.  Investigation of the time characteristics of fluctuations of the phases of optical waves propagating in the bottom layer of the atmosphere , 1972 .

[62]  Vladimir P. Lukin,et al.  Potential capabilities of adaptive-optical systems in the atmosphere , 1994 .

[63]  V P Lukin,et al.  Dynamic characteristics of optical adaptive systems. , 1987, Applied optics.

[64]  Vladimir P. Lukin,et al.  Algorithm for phasing a segmented mirror , 2004, SPIE Astronomical Telescopes + Instrumentation.

[65]  Vladimir P. Lukin,et al.  The influence of wavefront dislocations on phase conjugation instability with thermal blooming compensation , 1997 .

[66]  Vladimir P. Lukin,et al.  Wavefront sensors and algorithms for adaptive optical systems , 2010, Astronomical Telescopes + Instrumentation.

[67]  Vladimir P. Lukin,et al.  Amplitude-phase control of a laser beam in a two-mirror adaptive system , 2004, SPIE Remote Sensing.

[68]  V. V. Nosov,et al.  Image jitter of a laser guide star in a monostatic formation scheme , 2009 .

[69]  V P Lukin,et al.  Partial correction for turbulent distortions in telescopes. , 1998, Applied optics.

[70]  S. Flatté,et al.  Intensity images and statistics from numerical simulation of wave propagation in 3-D random media. , 1988, Applied optics.

[71]  Vladimir P. Lukin Atmospheric Adaptive Optics , 1996 .

[72]  Vladimir P Lukin,et al.  Phase-correction of turbulent distortions of an optical wave propagating under conditions of strong intensity fluctuations. , 2002, Applied optics.

[73]  V P Lukin Efficiency of some correction systems. , 1979, Optics letters.

[74]  P. G. Kovadlo,et al.  "The first light" for the system of inputting the elements of AO into the optical path of LSVT , 2018, Atmospheric and Ocean Optics.

[75]  O. N. Emaleev,et al.  Tests of the adaptive optical system with a modified correlation sensor at the big solar vacuum telescope , 2008, Remote Sensing.

[76]  Vladimir P. Lukin,et al.  First-order adaptive system for correction of images in solar ground-based telescopes , 2000, Astronomical Telescopes and Instrumentation.