Lack of cortical contrast gain control in human photosensitive epilepsy

Television and video games may be powerful triggers for visually induced epileptic seizures. To better understand the triggering elements of visual stimuli and cortical mechanisms of hyperexcitability, we examined eleven patients with idiopathic photosensitive epilepsy by recording visually evoked potentials (VEPs) in response to temporally modulated patterns of different contrast. For stimuli of low–medium, but not high, temporal frequency, the contrast dependence of VEP amplitude and latency is remarkably abnormal for luminance contrast (black–white), but not so for chromatic contrast (equiluminant red–green) stimuli. We conclude that cortical mechanisms of contrast gain control for pattern stimuli of relatively low temporal frequency and high luminance contrast are lacking or severely impaired in photosensitive subjects.

[1]  F. Simon,et al.  The phase of PVEP in maxwellian view: Influence of contrast, spatial and temporal frequency , 1992, Vision Research.

[2]  J. Movshon,et al.  Linearity and Normalization in Simple Cells of the Macaque Primary Visual Cortex , 1997, The Journal of Neuroscience.

[3]  P. Genton,et al.  Erratum: Idiopathic photosensitive occipital lobe epilepsy (Epilepsia (1995) 36 (883-891)) , 1996 .

[4]  R. Guerrini,et al.  Adolescent Onset of Idiopathic Photosensitive Occipital Epilepsy After Remission of Benign Rolandic Epilepsy , 1997, Epilepsia.

[5]  A. Wilkins,et al.  Mechanisms of epileptogenesis in photosensitive epilepsy implied by the effects of moving patterns. , 1985, Electroencephalography and clinical neurophysiology.

[6]  M. Carandini,et al.  Summation and division by neurons in primate visual cortex. , 1994, Science.

[7]  R Guerrini,et al.  Idiopathic Photosensitive Occipital Lobe Epilepsy , 1995, Epilepsia.

[8]  D. Burr,et al.  Visual Ageing: Unspecific Decline of the Responses to Luminance and Colour , 1996, Vision Research.

[9]  D Regan,et al.  Chromatic adaptation and steady-state evoked potentials. , 1968, Vision research.

[10]  A. Fiorentini,et al.  Pattern-reversal electroretinogram in response to chromatic stimuli: II Monkey , 1994, Visual Neuroscience.

[11]  D. G. Albrecht,et al.  Cortical neurons: Isolation of contrast gain control , 1992, Vision Research.

[12]  T. Matsuishi,et al.  Photosensitive Seizures Provoked While Viewing “Pocket Monsters,” a Made‐for‐Televison Animation Program in Japan , 1998, Epilepsia.

[13]  A. Wilkins,et al.  Neurophysiological aspects of pattern-sensitive epilepsy. , 1979, Brain : a journal of neurology.

[14]  S. Benbadis,et al.  Epileptic seizures and syndromes. , 2001, Neurologic clinics.

[15]  K. Mullen The contrast sensitivity of human colour vision to red‐green and blue‐yellow chromatic gratings. , 1985, The Journal of physiology.

[16]  B. Zifkin Reflex epilepsies and reflex seizures , 1998 .

[17]  J D Victor,et al.  How the contrast gain control modifies the frequency responses of cat retinal ganglion cells. , 1981, The Journal of physiology.

[18]  E. Kaplan,et al.  The dynamics of primate M retinal ganglion cells , 1999, Visual Neuroscience.

[19]  F. Campbell,et al.  Electrophysiological evidence for the existence of orientation and size detectors in the human visual system , 1970, The Journal of physiology.

[20]  H Spekreijse,et al.  Contrast evoked responses in man. , 1973, Vision research.

[21]  D. G. Albrecht,et al.  Striate cortex of monkey and cat: contrast response function. , 1982, Journal of neurophysiology.

[22]  David C. Burr,et al.  The effects of ageing on the pattern electroretinogram and visual evoked potential in humans , 1991, Vision Research.

[23]  A. Fiorentini,et al.  Responses to chromatic and luminance contrast in glaucoma: a psychophysical and electrophysiological study , 1997, Vision Research.

[24]  R. Press,et al.  Proposal for Revised Clinical and ~lectro~nce~halo ~ra~hic Classification of Epileptic Seizures From the Commission on Classification and Terminology of the International League Against Epilepsy* , 1981 .