Many-body Green's function GW and Bethe-Salpeter study of the optical excitations in a paradigmatic model dipeptide.

We study within the many-body Green's function GW and Bethe-Salpeter formalisms the excitation energies of a paradigmatic model dipeptide, focusing on the four lowest-lying local and charge-transfer excitations. Our GW calculations are performed at the self-consistent level, updating first the quasiparticle energies, and further the single-particle wavefunctions within the static Coulomb-hole plus screened-exchange approximation to the GW self-energy operator. Important level crossings, as compared to the starting Kohn-Sham LDA spectrum, are identified. Our final Bethe-Salpeter singlet excitation energies are found to agree, within 0.07 eV, with CASPT2 reference data, except for one charge-transfer state where the discrepancy can be as large as 0.5 eV. Our results agree best with LC-BLYP and CAM-B3LYP calculations with enhanced long-range exchange, with a 0.1 eV mean absolute error. This has been achieved employing a parameter-free formalism applicable to metallic or insulating extended or finite systems.

[1]  Jeffrey B. Neaton,et al.  Gap renormalization of molecular crystals from density-functional theory , 2013 .

[2]  Huy V. Nguyen,et al.  GW calculations using the spectral decomposition of the dielectric matrix: Verification, validation, and comparison of methods , 2013 .

[3]  Shane R. Yost,et al.  Electrostatic Effects at Organic Semiconductor Interfaces: A Mechanism for “Cold” Exciton Breakup , 2013 .

[4]  Fabien Bruneval,et al.  Benchmarking the Starting Points of the GW Approximation for Molecules. , 2013, Journal of chemical theory and computation.

[5]  Michiel J. van Setten,et al.  The GW-Method for Quantum Chemistry Applications: Theory and Implementation. , 2013, Journal of chemical theory and computation.

[6]  X. Blase,et al.  Many-body Green's function study of coumarins for dye-sensitized solar cells , 2012, 1209.1900.

[7]  A. Troisi,et al.  Long-range exciton dissociation in organic solar cells , 2012, Proceedings of the National Academy of Sciences.

[8]  Noa Marom,et al.  Strategy for finding a reliable starting point for G 0 W 0 demonstrated for molecules , 2012 .

[9]  Fabien Bruneval,et al.  Ionization energy of atoms obtained from GW self-energy or from random phase approximation total energies. , 2012, The Journal of chemical physics.

[10]  P. Umari,et al.  Importance of semicore states in GW calculations for simulating accurately the photoemission spectra of metal phthalocyanine molecules. , 2012, The Journal of chemical physics.

[11]  Leeor Kronik,et al.  Excitation Gaps of Finite-Sized Systems from Optimally Tuned Range-Separated Hybrid Functionals. , 2012, Journal of chemical theory and computation.

[12]  X. Blase,et al.  Short-range to long-range charge-transfer excitations in the zincbacteriochlorin-bacteriochlorin complex: a Bethe-Salpeter study. , 2012, Physical review letters.

[13]  J. Neaton,et al.  Quantitative molecular orbital energies within a G0W0 approximation , 2012, 1204.0509.

[14]  G. Rignanese,et al.  Band structure of gold from many-body perturbation theory , 2012, 1203.4508.

[15]  David Beljonne,et al.  The Role of Driving Energy and Delocalized States for Charge Separation in Organic Semiconductors , 2012, Science.

[16]  Denis Andrienko,et al.  Excited States of Dicyanovinyl-Substituted Oligothiophenes from Many-Body Green's Functions Theory. , 2012, Journal of chemical theory and computation.

[17]  A. Tkatchenko,et al.  Resolution-of-identity approach to Hartree–Fock, hybrid density functionals, RPA, MP2 and GW with numeric atom-centered orbital basis functions , 2012, 1201.0655.

[18]  S. Ciuchi,et al.  Molecular fingerprints in the electronic properties of crystalline organic semiconductors: from experiment to theory. , 2011, Physical review letters.

[19]  S. Louie,et al.  Simple approximate physical orbitals for GW quasiparticle calculations. , 2011, Physical review letters.

[20]  L. Kronik,et al.  Quasiparticle and optical spectroscopy of the organic semiconductors pentacene and PTCDA from first principles , 2011, 1110.4928.

[21]  X. Blase,et al.  Electron-phonon coupling in the C60 fullerene within the many-body GW approach , 2011, 1109.0885.

[22]  X. Blase,et al.  Charge-transfer excitations in molecular donor-acceptor complexes within the many-body Bethe-Salpeter approach , 2011, 1109.0824.

[23]  N. Marzari,et al.  Photoelectron properties of DNA and RNA bases from many-body perturbation theory , 2011, 1107.1833.

[24]  A. Marini,et al.  Double excitations in correlated systems: a many-body approach. , 2011, The Journal of chemical physics.

[25]  Erich Runge,et al.  First-principles GW calculations for DNA and RNA nucleobases , 2011, 1101.3738.

[26]  D. Sánchez-Portal,et al.  An O(N3) implementation of Hedin's GW approximation for molecules. , 2011, The Journal of chemical physics.

[27]  San-Huang Ke,et al.  All-electron GW methods implemented in molecular orbital space: Ionization energy and electron affinity of conjugated molecules , 2010, 1012.1084.

[28]  Claudio Attaccalite,et al.  First-principles GW calculations for fullerenes, porphyrins, phtalocyanine, and other molecules of interest for organic photovoltaic applications , 2010, 1011.3933.

[29]  D. Lu,et al.  Ab initio calculations of optical absorption spectra: solution of the Bethe-Salpeter equation within density matrix perturbation theory. , 2010, The Journal of chemical physics.

[30]  P. Ghosh,et al.  Computational approaches to charge transfer excitations in a zinc tetraphenylporphyrin and C70 complex. , 2010, The Journal of chemical physics.

[31]  L. Reining,et al.  Strong interplay between structure and electronic properties in CuIn(S,Se){2}: a first-principles study. , 2010, Physical review letters.

[32]  K. Jacobsen,et al.  Fully self-consistent GW calculations for molecules , 2010, 1001.1274.

[33]  R. Baer,et al.  Prediction of charge-transfer excitations in coumarin-based dyes using a range-separated functional tuned from first principles. , 2009, The Journal of chemical physics.

[34]  Yuchen Ma,et al.  Excited states of biological chromophores studied using many-body perturbation theory: Effects of resonant-antiresonant coupling and dynamical screening , 2009 .

[35]  F. Bruneval,et al.  Effects of electronic and lattice polarization on the band structure of delafossite transparent conductive oxides. , 2009, Physical review letters.

[36]  Mark E. Casida,et al.  Time-dependent density-functional theory for molecules and molecular solids , 2009 .

[37]  S. Klaiman,et al.  Spanning the Hilbert space with an even tempered Gaussian basis set , 2009 .

[38]  C. Hogan,et al.  Ab initio electronic and optical spectra of free-base porphyrins: The role of electronic correlation. , 2009, The Journal of chemical physics.

[39]  R. Baer,et al.  Reliable prediction of charge transfer excitations in molecular complexes using time-dependent density functional theory. , 2009, Journal of the American Chemical Society.

[40]  Bryan M. Wong,et al.  Coumarin dyes for dye-sensitized solar cells: A long-range-corrected density functional study. , 2008, The Journal of chemical physics.

[41]  Andrea Marini,et al.  yambo: An ab initio tool for excited state calculations , 2008, Comput. Phys. Commun..

[42]  A. Marini,et al.  Exciton-plasmon States in nanoscale materials: breakdown of the Tamm-Dancoff approximation. , 2008, Nano letters.

[43]  John M Herbert,et al.  Charge-transfer excited states in a pi-stacked adenine dimer, as predicted using long-range-corrected time-dependent density functional theory. , 2008, The journal of physical chemistry. B.

[44]  Trygve Helgaker,et al.  Excitation energies in density functional theory: an evaluation and a diagnostic test. , 2008, The Journal of chemical physics.

[45]  Lucia Reining,et al.  Understanding correlations in vanadium dioxide from first principles. , 2007, Physical review letters.

[46]  Georg Kresse,et al.  Self-consistent G W calculations for semiconductors and insulators , 2007 .

[47]  K. Hirao,et al.  Theoretical investigation of the excited states of coumarin dyes for dye-sensitized solar cells. , 2007, The journal of physical chemistry. A.

[48]  G. Scuseria,et al.  Importance of short-range versus long-range Hartree-Fock exchange for the performance of hybrid density functionals. , 2006, The Journal of chemical physics.

[49]  Lucia Reining,et al.  Effect of self-consistency on quasiparticles in solids , 2006 .

[50]  Leeor Kronik,et al.  Valence electronic structure of gas-phase 3,4,9,10-perylene tetracarboxylic acid dianhydride: Experiment and theory , 2006 .

[51]  Troy Van Voorhis,et al.  Constrained Density Functional Theory and Its Application in Long-Range Electron Transfer. , 2006 .

[52]  M. L. Tiago,et al.  First-principles GW-BSE excitations in organic molecules , 2005, cond-mat/0508644.

[53]  A. Savin,et al.  Long-range/short-range separation of the electron-electron interaction in density functional theory , 2004, physics/0410062.

[54]  R. Baer,et al.  Density functional theory with correct long-range asymptotic behavior. , 2004, Physical review letters.

[55]  N. Handy,et al.  A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP) , 2004 .

[56]  K. Hirao,et al.  A long-range-corrected time-dependent density functional theory. , 2004, The Journal of chemical physics.

[57]  M. Head‐Gordon,et al.  Failure of time-dependent density functional theory for long-range charge-transfer excited states: the zincbacteriochlorin-bacteriochlorin and bacteriochlorophyll-spheroidene complexes. , 2004, Journal of the American Chemical Society.

[58]  David J. Tozer,et al.  Relationship between long-range charge-transfer excitation energy error and integer discontinuity in Kohn–Sham theory , 2003 .

[59]  T. Kotani,et al.  All-electron self-consistent GW approximation: application to Si, MnO, and NiO. , 2003, Physical review letters.

[60]  M. Head‐Gordon,et al.  Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange , 2003 .

[61]  R. Friend,et al.  Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. , 2001, Science.

[62]  K. Hirao,et al.  A long-range correction scheme for generalized-gradient-approximation exchange functionals , 2001 .

[63]  Luis Serrano-Andrés,et al.  Does density functional theory contribute to the understanding of excited states of unsaturated organic compounds , 1999 .

[64]  Markus P. Fülscher,et al.  Theoretical Study of the Electronic Spectroscopy of Peptides. III. Charge-Transfer Transitions in Polypeptides , 1998 .

[65]  Stefan Albrecht Lucia Reining Rodolfo Del Sole Giovanni Onida Ab Initio Calculation of Excitonic Effects in the Optical Spectra of Semiconductors , 1998, cond-mat/9803194.

[66]  Eric L. Shirley,et al.  Optical Absorption of Insulators and the Electron-Hole Interaction: An Ab Initio Calculation , 1998 .

[67]  Steven G. Louie,et al.  Excitonic Effects and the Optical Absorption Spectrum of Hydrogenated Si Clusters , 1998 .

[68]  F. Aryasetiawan,et al.  The GW method , 1997, cond-mat/9712013.

[69]  F. Weigend,et al.  RI-MP2: first derivatives and global consistency , 1997 .

[70]  Andreas Savin,et al.  Combining long-range configuration interaction with short-range density functionals , 1997 .

[71]  Ranbir Singh,et al.  J. Mol. Struct. (Theochem) , 1996 .

[72]  J. Almlöf,et al.  Integral approximations for LCAO-SCF calculations , 1993 .

[73]  A. Becke A New Mixing of Hartree-Fock and Local Density-Functional Theories , 1993 .

[74]  A. J. Heeger,et al.  Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene , 1992, Science.

[75]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[76]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[77]  G. Strinati Application of the Green’s functions method to the study of the optical properties of semiconductors , 1988 .

[78]  Daling,et al.  GW approach to the calculation of electron self-energies in semiconductors. , 1988, Physical review. B, Condensed matter.

[79]  M. Schlüter,et al.  Self-energy operators and exchange-correlation potentials in semiconductors. , 1988, Physical review. B, Condensed matter.

[80]  Louie,et al.  Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. , 1986, Physical review. B, Condensed matter.

[81]  E. Gross,et al.  Density-Functional Theory for Time-Dependent Systems , 1984 .

[82]  G. Strinati Dynamical Shift and Broadening of Core Excitons in Semiconductors , 1982 .

[83]  W. Hanke,et al.  Dynamical aspects of correlation corrections in a covalent crystal , 1982 .

[84]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[85]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[86]  Hans Jurgen Mattausch,et al.  DYNAMICAL CORRELATION EFFECTS ON THE QUASIPARTICLE BLOCH STATES OF A COVALENT CRYSTAL , 1980 .

[87]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[88]  W. Hanke,et al.  Many-Particle Effects in the Optical Excitations of a Semiconductor , 1979 .

[89]  L. J. Sham,et al.  Many-Particle Derivation of the Effective-Mass Equation for the Wannier Exciton , 1966 .

[90]  L. Hedin NEW METHOD FOR CALCULATING THE ONE-PARTICLE GREEN'S FUNCTION WITH APPLICATION TO THE ELECTRON-GAS PROBLEM , 1965 .

[91]  R. S. Mulliken Molecular Compounds and their Spectra. II , 1952 .

[92]  Journal of Chemical Physics , 1932, Nature.

[93]  Jerzy Leszczynski,et al.  Handbook of Computational Chemistry , 2012 .

[94]  Josef Paldus,et al.  Recent Progress in Coupled Cluster Methods , 2010 .

[95]  S. Ten-no,et al.  Intramolecular charge-transfer excitation energies from range-separated hybrid functionals using the Yukawa potential , 2009 .

[96]  New Journal of Physics The , 2007 .

[97]  Kieron Burke,et al.  Basics of TDDFT , 2006 .

[98]  Donald G. Truhlar,et al.  Theoretical Chemistry Accounts , 2001 .

[99]  L. D. Künne,et al.  Recent Developments and Applications of Modern Density Functional Theory , 1998 .

[100]  A. Savin,et al.  On degeneracy, near-degeneracy and density functional theory , 1996 .

[101]  N. H. March,et al.  Electron Correlation in the Solid State , 1995 .

[102]  R. Williams,et al.  Journal of American Chemical Society , 1979 .

[103]  A. Penzkofer,et al.  CHEMICAL PHYSICS LETTERS , 1976 .

[104]  G. V. Chester,et al.  Solid State Physics , 2000 .