Surface-enhanced Raman spectroscopy toward application in plasmonic photocatalysis on metal nanostructures

[1]  Peter Nordlander,et al.  Plasmon-induced hot carriers in metallic nanoparticles. , 2014, ACS nano.

[2]  Xin Ding,et al.  Artificial photosynthesis--functional devices for light driven water splitting with photoactive anodes based on molecular catalysts. , 2014, Physical chemistry chemical physics : PCCP.

[3]  K. S. Shin,et al.  Surface-Enhanced Raman Scattering of 4-Nitrobenzenethiol and 4-Aminobenzenethiol on Silver in Icy Environments at Liquid Nitrogen Temperature , 2014 .

[4]  S. Schlücker Surface-enhanced Raman spectroscopy: concepts and chemical applications. , 2014, Angewandte Chemie.

[5]  Hongxing Xu,et al.  Molecular resonant dissociation of surface-adsorbed molecules by plasmonic nanoscissors. , 2014, Nanoscale.

[6]  De‐Yin Wu,et al.  Theoretical Study of Plasmon-Enhanced Surface Catalytic Coupling Reactions of Aromatic Amines and Nitro Compounds. , 2014, The journal of physical chemistry letters.

[7]  Hui Zhang,et al.  Optical Generation of Hot Plasmonic Carriers in Metal Nanocrystals: The Effects of Shape and Field Enhancement , 2014 .

[8]  Wei Hu,et al.  Roles of Plasmonic Excitation and Protonation on Photoreactions of p-Aminobenzenethiol on Ag Nanoparticles , 2014 .

[9]  Jing-fu Liu,et al.  Submonolayer-Pt-Coated Ultrathin Au Nanowires and Their Self-Organized Nanoporous Film: SERS and Catalysis Active Substrates for Operando SERS Monitoring of Catalytic Reactions. , 2014, The journal of physical chemistry letters.

[10]  De‐Yin Wu,et al.  Activation of oxygen on gold and silver nanoparticles assisted by surface plasmon resonances. , 2014, Angewandte Chemie.

[11]  Hui Zhang,et al.  Photogeneration of hot plasmonic electrons with metal nanocrystals: Quantum description and potential applications , 2014 .

[12]  K. S. Shin,et al.  Fe3+ to Fe2+ Conversion by Plasmonically Generated Hot Electrons from Ag Nanoparticles: Surface-Enhanced Raman Scattering Evidence , 2014 .

[13]  C. Clavero,et al.  Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices , 2014, Nature Photonics.

[14]  B. Bartlett,et al.  Anchoring a molecular iron catalyst to solar-responsive WO3 improves the rate and selectivity of photoelectrochemical water oxidation. , 2014, Journal of the American Chemical Society.

[15]  S. Cronin,et al.  Plasmon-enhanced water splitting on TiO2-passivated GaP photocatalysts. , 2014, Physical chemistry chemical physics : PCCP.

[16]  B. Ren,et al.  Surface‐Enhanced Raman Spectroscopy (SERS): General Introduction , 2014 .

[17]  Phillip Christopher,et al.  Direct Photocatalysis by Plasmonic Nanostructures , 2014 .

[18]  Lin Guo,et al.  Direct observation of p,p′‐dimercaptoazobenzene produced from p‐aminothiophenol and p‐nitrothiophenol on Cu2O nanoparticles by surface‐enhanced Raman spectroscopy , 2014 .

[19]  E. Liu,et al.  Photocatalytic Reduction of CO2 into Methanol over Ag/TiO2 Nanocomposites Enhanced by Surface Plasmon Resonance , 2014, Plasmonics.

[20]  Zhenyi Zhang,et al.  Au/Pt Nanoparticle-Decorated TiO2 Nanofibers with Plasmon-Enhanced Photocatalytic Activities for Solar-to-Fuel Conversion , 2013 .

[21]  V. Sharma,et al.  Visible-light-harvesting reduction of CO2 to chemical fuels with plasmonic Ag@AgBr/CNT nanocomposites , 2013 .

[22]  Hongxing Xu,et al.  Plasmonic scissors for molecular design. , 2013, Chemistry.

[23]  K. Schanze,et al.  Mechanistic understanding of surface plasmon assisted catalysis on a single particle: cyclic redox of 4-aminothiophenol , 2013, Scientific Reports.

[24]  P. Matějka,et al.  In Situ SERS Study of Azobenzene Derivative Formation from 4-Aminobenzenethiol on Gold, Silver, and Copper Nanostructured Surfaces: What Is the Role of Applied Potential and Used Metal? , 2013 .

[25]  M. Muniz-Miranda SERS investigation on the adsorption and photoreaction of 4‐nitroanisole in Ag hydrosols , 2013 .

[26]  Yi‐Jun Xu,et al.  Efficient electrostatic self-assembly of one-dimensional CdS-Au nanocomposites with enhanced photoactivity, not the surface plasmon resonance effect. , 2013, Nanoscale.

[27]  B. Feringa,et al.  Effect of immobilization on gold on the temperature depence of photochromic switching of dithienylethenes , 2013 .

[28]  B. Feringa,et al.  University of Groningen Tuning the Temperature Dependence for Switching in Dithienylethene Photochromic Switches Kudernac, , 2013 .

[29]  Lin Guo,et al.  Observing reduction of 4-nitrobenzenthiol on gold nanoparticles in situ using surface-enhanced Raman spectroscopy. , 2013, Physical chemistry chemical physics : PCCP.

[30]  De‐Yin Wu,et al.  Raman spectroscopic investigation on TiO2-N719 dye interfaces using Ag@TiO2 nanoparticles and potential correlation strategies. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[31]  E. Waclawik,et al.  Photocatalysis on supported gold and silver nanoparticles under ultraviolet and visible light irradiation , 2013 .

[32]  Suljo Linic,et al.  Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties. , 2013, Accounts of chemical research.

[33]  Yu Han,et al.  Site-specific growth of Au-Pd alloy horns on Au nanorods: a platform for highly sensitive monitoring of catalytic reactions by surface enhancement Raman spectroscopy. , 2013, Journal of the American Chemical Society.

[34]  R. Yasukuni,et al.  Photoswitchable interactions between photochromic organic diarylethene and surface plasmon resonance of gold nanoparticles in hybrid thin films. , 2013, Physical chemistry chemical physics : PCCP.

[35]  Huaiyong Zhu,et al.  Enhancing catalytic performance of palladium in gold and palladium alloy nanoparticles for organic synthesis reactions through visible light irradiation at ambient temperatures. , 2013, Journal of the American Chemical Society.

[36]  Stephen B. Cronin,et al.  A Review of Surface Plasmon Resonance‐Enhanced Photocatalysis , 2013 .

[37]  B. Feringa,et al.  UV/vis and NIR light-responsive spiropyran self-assembled monolayers. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[38]  Martin Moskovits,et al.  An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. , 2013, Nature nanotechnology.

[39]  Hongxing Xu,et al.  Insights into the nature of plasmon-driven catalytic reactions revealed by HV-TERS. , 2013, Nanoscale.

[40]  Hsing-lin Wang,et al.  Laser wavelength- and power-dependent plasmon-driven chemical reactions monitored using single particle surface enhanced Raman spectroscopy. , 2013, Chemical communications.

[41]  Albert Polman,et al.  Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle. , 2013, Nano letters.

[42]  Hyunung Yu,et al.  b2 Peaks in SERS Spectra of 4-Aminobenzenethiol: A Photochemical Artifact or a Real Chemical Enhancement? , 2013, The journal of physical chemistry letters.

[43]  K. S. Shin,et al.  Visible-Light Response of 4-Aminobenzenethiol and 4,4′-Dimercaptoazobenzene Silver Salts , 2013 .

[44]  Huaiyong Zhu,et al.  Highly efficient and selective photocatalytic hydroamination of alkynes by supported gold nanoparticles using visible light at ambient temperature. , 2013, Chemical communications.

[45]  Y. Ide,et al.  Effects of Au Loading and CO2 Addition on Photocatalytic Selective Phenol Oxidation over TiO2‐Supported Au Nanoparticles , 2013 .

[46]  Sebastian Schlücker,et al.  Label-free SERS monitoring of chemical reactions catalyzed by small gold nanoparticles using 3D plasmonic superstructures. , 2013, Journal of the American Chemical Society.

[47]  Xiaodi Ren,et al.  Promoting the photoanode efficiency for water splitting by combining hematite and molecular Ru catalysts , 2013 .

[48]  Yang Yang,et al.  Photoreaction of matrix-isolated dihydroazulene-functionalized molecules on Au{111}. , 2013, Nano letters.

[49]  K. S. Shin,et al.  Photoreduction of 4,4'-dimercaptoazobenzene on ag revealed by Raman scattering spectroscopy. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[50]  H. Tada,et al.  One-Step Selective Aerobic Oxidation of Amines to Imines by Gold Nanoparticle-Loaded Rutile Titanium(IV) Oxide Plasmon Photocatalyst , 2013 .

[51]  Huaiyong Zhu,et al.  Selective reductions using visible light photocatalysts of supported gold nanoparticles , 2013 .

[52]  H. Xin,et al.  Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. , 2012, Nature materials.

[53]  Say Chye Joachim Loo,et al.  Mesoporous plasmonic Au-TiO2 nanocomposites for efficient visible-light-driven photocatalytic water reduction , 2012 .

[54]  S. Kobatake,et al.  Plasmonic enhancement of a photocycloreversion reaction of a diarylethene derivative using individually dispersed silver nanoparticles. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[55]  Yingzhou Huang,et al.  pH Dependent plasmon-driven surface-catalysis reactions of p,p′-dimercaptoazobenzene produced from para-aminothiophenol and 4-nitrobenzenethiol , 2012, Science China Chemistry.

[56]  Hongxing Xu,et al.  A novel application of plasmonics: plasmon-driven surface-catalyzed reactions. , 2012, Small.

[57]  Hairong Zheng,et al.  In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy , 2012, Scientific Reports.

[58]  Volker Deckert,et al.  Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. , 2012, Nature nanotechnology.

[59]  De‐Yin Wu,et al.  A DFT study on photoinduced surface catalytic coupling reactions on nanostructured silver: selective formation of azobenzene derivatives from para-substituted nitrobenzene and aniline. , 2012, Physical chemistry chemical physics : PCCP.

[60]  Jiangtian Li,et al.  Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. , 2012, Journal of the American Chemical Society.

[61]  Shutao Wang,et al.  Strongly visible-light responsive plasmonic shaped AgX:Ag (X = Cl, Br) nanoparticles for reduction of CO2 to methanol. , 2012, Nanoscale.

[62]  H. Kominami,et al.  Preparation of Au/CeO2 exhibiting strong surface plasmon resonance effective for selective or chemoselective oxidation of alcohols to aldehydes or ketones in aqueous suspensions under irradiation by green light. , 2012, Journal of the American Chemical Society.

[63]  Hongxing Xu,et al.  Selective reduction of nitroaromatic compounds on silver nanoparticles by visible light , 2012 .

[64]  N. Félidj,et al.  Specific and Nondestructive Detection of Different Diarylethene Isomers by NIR-SERS , 2012 .

[65]  Mohammad M. Shahjamali,et al.  Plasmon-Enhanced Hydrogen Evolution on Au-InVO4 Hybrid Microspheres , 2012 .

[66]  Zhong-Qun Tian,et al.  Surface-enhanced Raman spectroscopic study of p-aminothiophenol. , 2012, Physical chemistry chemical physics : PCCP.

[67]  K. S. Shin,et al.  Similarity and Dissimilarity in Surface-Enhanced Raman Scattering of 4-Aminobenzenethiol, 4,4′-Dimercaptoazobenzene, and 4,4′-Dimercaptohydrazobenzene on Ag , 2012 .

[68]  Huaiyong Zhu,et al.  Zeolite-supported gold nanoparticles for selective photooxidation of aromatic alcohols under visible-light irradiation. , 2012, Chemistry.

[69]  Yasuhiro Shiraishi,et al.  Gold nanoparticles located at the interface of anatase/rutile TiO2 particles as active plasmonic photocatalysts for aerobic oxidation. , 2012, Journal of the American Chemical Society.

[70]  H. Tada,et al.  TiO2 Crystal Form-Dependence of the Au/TiO2 Plasmon Photocatalyst’s Activity , 2012 .

[71]  Patrick L. Holland,et al.  A nickel thiolate catalyst for the long-lived photocatalytic production of hydrogen in a noble-metal-free system. , 2012, Angewandte Chemie.

[72]  K. Gordon,et al.  Vibrational spectroscopy as a probe of molecule-based devices. , 2012, Chemical Society reviews.

[73]  K. S. Shin,et al.  Surface-Enhanced Raman Scattering of 4-Aminobenzenethiol on Ag and Au: pH Dependence of b2-Type Bands , 2012 .

[74]  A. Kudo,et al.  Photocatalytic reduction of carbon dioxide over Ag cocatalyst-loaded ALa4Ti4O15 (A = Ca, Sr, and Ba) using water as a reducing reagent. , 2011, Journal of the American Chemical Society.

[75]  S. Linic,et al.  Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. , 2011, Nature materials.

[76]  K. S. Shin,et al.  Surface-Enhanced Raman Scattering Characteristics of 4-Aminobenzenethiol Derivatives Adsorbed on Silver , 2011 .

[77]  Hongxing Xu,et al.  Substrate-, wavelength-, and time-dependent plasmon-assisted surface catalysis reaction of 4-nitrobenzenethiol dimerizing to p,p'-dimercaptoazobenzene on Au, Ag, and Cu films. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[78]  Hongxing Xu,et al.  Remote Excitation Polarization-Dependent Surface Photochemical Reaction by Plasmonic Waveguide , 2011 .

[79]  Miaofang Chi,et al.  A highly active titanium dioxide based visible-light photocatalyst with nonmetal doping and plasmonic metal decoration. , 2011, Angewandte Chemie.

[80]  Yang Yang,et al.  Surface-enhanced Raman spectroscopy to probe reversibly photoswitchable azobenzene in controlled nanoscale environments. , 2011, Nano letters.

[81]  Prathamesh Pavaskar,et al.  Photocatalytic Conversion of CO2 to Hydrocarbon Fuels via Plasmon-Enhanced Absorption and Metallic Interband Transitions , 2011 .

[82]  James M Tour,et al.  Vibrational and electronic heating in nanoscale junctions. , 2011, Nature nanotechnology.

[83]  S. Kobatake,et al.  Enhanced photocycloreversion reaction of diarylethene polymers attached to gold nanoparticles in the solid state , 2011 .

[84]  Estíbaliz Merino,et al.  Synthesis of azobenzenes: the coloured pieces of molecular materials. , 2011, Chemical Society reviews.

[85]  Xiaoyan Qin,et al.  Facile in situ synthesis of visible-light plasmonic photocatalysts M@TiO2 (M = Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol , 2011 .

[86]  Hongxing Xu,et al.  Is 4‐nitrobenzenethiol converted to p,p′‐dimercaptoazobenzene or 4‐aminothiophenol by surface photochemistry reaction? , 2011 .

[87]  Suljo Linic,et al.  Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. , 2011, Nature chemistry.

[88]  Geniece L. Hallett-Tapley,et al.  Plasmon-Mediated Catalytic Oxidation of sec-Phenethyl and Benzyl Alcohols , 2011 .

[89]  Yiping Cui,et al.  Intracellular pH sensing using p-aminothiophenol functionalized gold nanorods with low cytotoxicity. , 2011, Analytical chemistry.

[90]  T. Tatsuma,et al.  Nanoimaging of localized plasmon-induced charge separation. , 2011, Chemical communications.

[91]  Polycarpos Falaras,et al.  Solvent Effects at the Photoelectrode/Electrolyte Interface of a DSC: A Combined Spectroscopic and Photoelectrochemical Study , 2011 .

[92]  Yingzhou Huang,et al.  The pH-Controlled Plasmon-Assisted Surface Photocatalysis Reaction of 4-Aminothiophenol to p,p′-Dimercaptoazobenzene on Au, Ag, and Cu Colloids , 2011 .

[93]  H. P. Lu,et al.  Probing ground-state single-electron self-exchange across a molecule-metal interface. , 2011, Journal of the American Chemical Society.

[94]  Suljo Linic,et al.  Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. , 2011, Journal of the American Chemical Society.

[95]  De‐Yin Wu,et al.  Photon-driven charge transfer and photocatalysis of p-aminothiophenol in metal nanogaps: a DFT study of SERS. , 2011, Chemical communications.

[96]  S. Cronin,et al.  Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. , 2011, Nano letters.

[97]  Din Ping Tsai,et al.  Plasmonic Photocatalyst for H2 Evolution in Photocatalytic Water Splitting , 2011 .

[98]  Kristin L. Wustholz,et al.  Nanostructures and Surface-Enhanced Raman Spectroscopy , 2011 .

[99]  P. Etchegoin,et al.  Basic Electromagnetic Theory of SERS , 2010 .

[100]  Sebastian Schlücker,et al.  Surface enhanced Raman spectroscopy : analytical, biophysical and life science applications , 2010 .

[101]  Huaiyong Zhu,et al.  Reduction of nitroaromatic compounds on supported gold nanoparticles by visible and ultraviolet light. , 2010, Angewandte Chemie.

[102]  Yinchan Luo,et al.  Facile subsequently light-induced route to highly efficient and stable sunlight-driven Ag-AgBr plasmonic photocatalyst. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[103]  Simion Astilean,et al.  Disentangling SERS signals from two molecular species: A new evidence for the production of p,p′-dimercaptoazobenzene by catalytic coupling reaction of p-aminothiophenol on metallic nanostructures , 2010 .

[104]  Xiaobo Chen,et al.  Semiconductor-based photocatalytic hydrogen generation. , 2010, Chemical reviews.

[105]  Leroy Cronin,et al.  Artificial photosynthesis – solar fuels: current status and future prospects , 2010 .

[106]  Yingzhou Huang,et al.  Can p,p′-Dimercaptoazobisbenzene Be Produced from p-Aminothiophenol by Surface Photochemistry Reaction in the Junctions of a Ag Nanoparticle−Molecule−Ag (or Au) Film? , 2010 .

[107]  Zhong-Qun Tian,et al.  When the signal is not from the original molecule to be detected: chemical transformation of para-aminothiophenol on Ag during the SERS measurement. , 2010, Journal of the American Chemical Society.

[108]  Jiaguo Yu,et al.  Microwave-hydrothermal preparation and visible-light photoactivity of plasmonic photocatalyst Ag-TiO2 nanocomposite hollow spheres. , 2010, Chemistry, an Asian journal.

[109]  M. Irie,et al.  Photochromism of diarylethene molecules and crystals , 2010, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[110]  Hongxing Xu,et al.  Ascertaining p,p'-dimercaptoazobenzene produced from p-aminothiophenol by selective catalytic coupling reaction on silver nanoparticles. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[111]  S. Linic,et al.  Enhancing Photochemical Activity of Semiconductor Nanoparticles with Optically Active Ag Nanostructures: Photochemistry Mediated by Ag Surface Plasmons , 2010 .

[112]  Chang Heon Kim The generating function for traces of singular moduli and an application to Borcherds products , 2010 .

[113]  Hiroaki Tada,et al.  Self-assembled heterosupramolecular visible light photocatalyst consisting of gold nanoparticle-loaded titanium(IV) dioxide and surfactant. , 2010, Journal of the American Chemical Society.

[114]  Younan Xia,et al.  Probing the photothermal effect of gold-based nanocages with surface-enhanced Raman scattering (SERS). , 2009, Angewandte Chemie.

[115]  J. M. Coronado,et al.  Development of alternative photocatalysts to TiO2: Challenges and opportunities , 2009 .

[116]  Javier J. Concepcion,et al.  Making oxygen with ruthenium complexes. , 2009, Accounts of chemical research.

[117]  S. Kobatake,et al.  Light-Controllable Surface Plasmon Resonance Absorption of Gold Nanoparticles Covered with Photochromic Diarylethene Polymers , 2009 .

[118]  De‐Yin Wu,et al.  Surface Catalytic Coupling Reaction of p-Mercaptoaniline Linking to Silver Nanostructures Responsible for Abnormal SERS Enhancement: A DFT Study , 2009 .

[119]  K. S. Shin,et al.  Visible laser-induced photoreduction of silver 4-nitrobenzenethiolate revealed by Raman scattering spectroscopy , 2009 .

[120]  Jiaguo Yu,et al.  Fabrication and Characterization of Visible-Light-Driven Plasmonic Photocatalyst Ag/AgCl/TiO2 Nanotube Arrays , 2009 .

[121]  R. Shimizu,et al.  Near-infrared continuous-wave light driving a two-photon photochromic reaction with the assistance of localized surface plasmon. , 2009, Journal of the American Chemical Society.

[122]  V. Likodimos,et al.  Prolonged Light and Thermal Stress Effects on Industrial Dye-Sensitized Solar Cells: A Micro-Raman Investigation on the Long-Term Stability of Aged Cells , 2009 .

[123]  L. Kavan,et al.  Supramolecular Assembly of Single-Walled Carbon Nanotubes with a Ruthenium(II)−Bipyridine Complex: An in Situ Raman Spectroelectrochemical Study , 2009 .

[124]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[125]  A. Corma,et al.  Gold-Catalyzed Synthesis of Aromatic Azo Compounds from Anilines and Nitroaromatics , 2008, Science.

[126]  P G Etchegoin,et al.  A perspective on single molecule SERS: current status and future challenges. , 2008, Physical chemistry chemical physics : PCCP.

[127]  K. Matsuda,et al.  Conductance Photoswitching of Diarylethene-Gold Nanoparticle Network Induced by Photochromic Reaction , 2008 .

[128]  B. Pettinger,et al.  Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. , 2008, Physical review letters.

[129]  H. Tian,et al.  Next step of photochromic switches , 2008 .

[130]  Carsten Rockstuhl,et al.  A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. , 2008, Journal of the American Chemical Society.

[131]  Jian-Feng Li,et al.  Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. , 2007, Chemical communications.

[132]  Pablo G. Etchegoin,et al.  Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study , 2007 .

[133]  P. Etchegoin,et al.  Statistics of single molecule SERS signals: is there a Poisson distribution of intensities? , 2007, Physical chemistry chemical physics : PCCP.

[134]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[135]  L. Brus,et al.  Photovoltage and Photocatalyzed Growth in Citrate-Stabilized Colloidal Silver Nanocrystals† , 2007 .

[136]  K. Sumathy,et al.  A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production , 2007 .

[137]  K. Kontturi,et al.  Optical switching of coupled plasmons of Ag-nanoparticles by photoisomerisation of an azobenzene ligand. , 2007, Physical chemistry chemical physics : PCCP.

[138]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[139]  Tibor Kudernac,et al.  Uni- and bi-directional light-induced switching of diarylethenes on gold nanoparticles. , 2006, Chemical communications.

[140]  George C. Schatz,et al.  Electromagnetic mechanism of SERS , 2006 .

[141]  Pablo G. Etchegoin,et al.  Rigorous justification of the |E|4 enhancement factor in Surface Enhanced Raman Spectroscopy☆ , 2006 .

[142]  P. Jain,et al.  Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. , 2006, The journal of physical chemistry. B.

[143]  J. Downing,et al.  Solvent effects on interfacial electron transfer from Ru(4,4'-dicarboxylic acid-2,2'-bipyridine)2(NCS)2 to nanoparticulate TiO2: spectroscopy and solar photoconversion. , 2005, The journal of physical chemistry. A.

[144]  Jiaguo Yu,et al.  Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity , 2005 .

[145]  Gerhard Ertl,et al.  Tip‐enhanced Raman spectroscopy (TERS) of malachite green isothiocyanate at Au(111): bleaching behavior under the influence of high electromagnetic fields , 2005 .

[146]  M. Grätzel,et al.  Mesoscopic solar cells for electricity and hydrogen production from sunlight , 2005 .

[147]  Prashant V Kamat,et al.  Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation. , 2005, Journal of the American Chemical Society.

[148]  Kenji Matsuda,et al.  Diarylethene as a photoswitching unit , 2004 .

[149]  Kwan Kim,et al.  Photolytic reduction of 4-nitrobenzenethiol on Au mediated via Ag nanoparticles , 2003 .

[150]  F. Hubenthal,et al.  Chemical interface damping of surface plasmon excitation in metal nanoparticles: a study by persistent spectral hole burning , 2003 .

[151]  Gerhard Ertl,et al.  Surface-enhanced and STM-tip-enhanced Raman spectroscopy at metal surfaces , 2002 .

[152]  Prashant V. Kamat,et al.  Photophysical, photochemical and photocatalytic aspects of metal nanoparticles , 2002 .

[153]  S. Han,et al.  Patterning of Organic Monolayers on Silver via Surface-Induced Photoreaction , 2002 .

[154]  Hironori Arakawa,et al.  Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst , 2001, Nature.

[155]  M. Moskovits,et al.  Enhanced photochemistry of 2‐aminopyridine adsorbed on silver colloid surfaces , 2001 .

[156]  C. Mirkin,et al.  Photoinduced Conversion of Silver Nanospheres to Nanoprisms , 2001, Science.

[157]  M. Fox,et al.  Photoreactivity of Self-assembled Monolayers of Azobenzene or Stilbene Derivatives Capped on Colloidal Gold Clusters , 2001 .

[158]  C. Haynes,et al.  Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics , 2001 .

[159]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[160]  P. Kamat,et al.  Improving the Photoelectrochemical Performance of Nanostructured TiO2 Films by Adsorption of Gold Nanoparticles , 2000 .

[161]  Michalina Bickford,et al.  Concise Encyclopedia of Chemical Technology , 1999 .

[162]  A. Campion,et al.  Surface-enhanced Raman scattering , 1998 .

[163]  Hrvoje Petek,et al.  Femtosecond Time-Resolved Two-Photon Photoemission Studies of Electron Dynamics in Metals , 1998 .

[164]  M. Moskovits,et al.  Effect of Surface Geometry on the Photochemical Reaction of 1,10-Phenanthroline Adsorbed on Silver Colloid Surfaces , 1997 .

[165]  M. Moskovits,et al.  ADSORBATE PHOTOCHEMISTRY ON A COLLOID SURFACE : PHTHALAZINE ON SILVER , 1996 .

[166]  Naoki Matsuda,et al.  Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-Teller contribution , 1994 .

[167]  K. P. Leung,et al.  Photolysis of p-nitrobenzoic acid on roughened silver surfaces , 1988 .

[168]  R. Birke,et al.  The effect of molecular structure on voltage induced shifts of charge transfer excitation in surface enhanced Raman scattering , 1984 .

[169]  I. Pockrand,et al.  Surface enhanced and disorder induced Raman scattering from silver films , 1981 .

[170]  John R. Lombardi,et al.  Theory of Enhance I Light Scattering from Molecules Adsorbed at the Metal-Solution Interface , 1979 .

[171]  Elias Burstein,et al.  “Giant” Raman scattering by adsorbed molecules on metal surfaces , 1979 .

[172]  M. Fleischmann,et al.  Raman spectra of pyridine adsorbed at a silver electrode , 1974 .

[173]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[174]  K. Venkataraman The chemistry of synthetic dyes , 1952 .