Towards high fidelity materials property prediction from multiscale modelling and simulation

The current approach to materials discovery and design remains dominated by experimental testing, frequently based on little more than trial and error. With the advent of ever more powerful computers, rapid, reliable and reproducible computer simulations are beginning to represent a feasible alternative. As high performance computing reaches the exascale, exploiting the resources efficiently presents interesting challenges and opportunities. Multiscale modelling and simulation of materials is an extremely promising candidate for exploiting these resources based on the assumption of a separation of scales in the architectures of nanomaterials. We present examples of hierarchical and concurrent multiscale approaches which benefit from the weak scaling of monolithic applications, thereby efficiently exploiting large scale computational resources. We discuss several multiscale techniques, incorporating the electronic to the continuum scale, which can be applied to the efficient design of a range of nanocomposites. We then discuss our work on the development of a software toolkit designed to provide verification, validation and uncertainty quantification to support actionable prediction from such calculations.

[1]  R. A. Richardson,et al.  The heterogeneous multiscale method applied to inelastic polymer mechanics , 2019, Philosophical Transactions of the Royal Society A.

[2]  A G Hoekstra,et al.  Semi-intrusive multiscale metamodelling uncertainty quantification with application to a model of in-stent restenosis , 2019, Philosophical Transactions of the Royal Society A.

[3]  Peter V. Coveney,et al.  Multiscale computing for science and engineering in the era of exascale performance , 2019, Philosophical Transactions of the Royal Society A.

[4]  C. Oliver-Leblond,et al.  Discontinuous crack growth and toughening mechanisms in concrete: A numerical study based on the beam-particle approach , 2019, Engineering Fracture Mechanics.

[5]  Stéphane Roux,et al.  Fast four-dimensional tensile test monitored via X-ray computed tomography: Elastoplastic identification from radiographs , 2019, The Journal of Strain Analysis for Engineering Design.

[6]  Tarah N. Sullivan,et al.  Lessons from the Ocean: Whale Baleen Fracture Resistance , 2018, Advanced materials.

[7]  Jaroslaw Knap,et al.  Accelerated scale-bridging through adaptive surrogate model evaluation , 2018, J. Comput. Sci..

[8]  J. L. Suter,et al.  Chemically Specific Multiscale Modeling of the Shear-Induced Exfoliation of Clay–Polymer Nanocomposites , 2018, ACS omega.

[9]  Suhao Li,et al.  The Mechanics of Reinforcement of Polymers by Graphene Nanoplatelets , 2018 .

[10]  S. Keten,et al.  A coarse-grained model for the mechanical behavior of graphene oxide , 2017 .

[11]  H. García,et al.  The necessity of structural irregularities for the chemical applications of graphene , 2017 .

[12]  G. Marom,et al.  Should polymer nanocomposites be regarded as molecular composites? , 2017, Journal of Materials Science.

[13]  Will Usher,et al.  SALib: An open-source Python library for Sensitivity Analysis , 2017, J. Open Source Softw..

[14]  E. Fileti,et al.  Exfoliation of Graphene in Ionic Liquids: Pyridinium versus Pyrrolidinium , 2017 .

[15]  Jaroslaw Knap,et al.  A computational framework for scale‐bridging in multi‐scale simulations , 2016 .

[16]  Wing Kam Liu,et al.  Predicting the Macroscopic Fracture Energy of Epoxy Resins from Atomistic Molecular Simulations , 2016 .

[17]  Gábor Csányi,et al.  Many-Body Coarse-Grained Interactions Using Gaussian Approximation Potentials. , 2016, The journal of physical chemistry. B.

[18]  Peter V. Coveney,et al.  Multiscale computing in the exascale era , 2016, J. Comput. Sci..

[19]  Peter V Coveney,et al.  On the calculation of equilibrium thermodynamic properties from molecular dynamics. , 2016, Physical chemistry chemical physics : PCCP.

[20]  R. Spolenak,et al.  Superior room-temperature ductility of typically brittle quasicrystals at small sizes , 2016, Nature Communications.

[21]  G. Karniadakis,et al.  A comparative study of coarse-graining methods for polymeric fluids: Mori-Zwanzig vs. iterative Boltzmann inversion vs. stochastic parametric optimization. , 2016, The Journal of chemical physics.

[22]  Alberto Striolo,et al.  The Carbon-Water Interface: Modeling Challenges and Opportunities for the Water-Energy Nexus. , 2016, Annual review of chemical and biomolecular engineering.

[23]  John Salvatier,et al.  Probabilistic programming in Python using PyMC3 , 2016, PeerJ Comput. Sci..

[24]  M. Otyepka,et al.  Modelling of graphene functionalization. , 2016, Physical chemistry chemical physics : PCCP.

[25]  J. L. Suter,et al.  Mechanism of Exfoliation and Prediction of Materials Properties of Clay-Polymer Nanocomposites from Multiscale Modeling. , 2015, Nano letters.

[26]  Rohit V Pappu,et al.  CAMELOT: A machine learning approach for coarse-grained simulations of aggregation of block-copolymeric protein sequences. , 2015, The Journal of chemical physics.

[27]  Alex J. Zelhofer,et al.  Resilient 3D hierarchical architected metamaterials , 2015, Proceedings of the National Academy of Sciences.

[28]  Kipton Barros,et al.  Distributed Database Kriging for Adaptive Sampling (D2KAS) , 2015, Comput. Phys. Commun..

[29]  A. Tkatchenko,et al.  Sliding mechanisms in multilayered hexagonal boron nitride and graphene: the effects of directionality, thickness, and sliding constraints. , 2015, Physical review letters.

[30]  J. L. Suter,et al.  Structure, dynamics, and function of the hammerhead ribozyme in bulk water and at a clay mineral surface from replica exchange molecular dynamics. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[31]  Derek Groen,et al.  Chemically Specific Multiscale Modeling of Clay–Polymer Nanocomposites Reveals Intercalation Dynamics, Tactoid Self-Assembly and Emergent Materials Properties , 2014, Advanced materials.

[32]  Monica H Lamm,et al.  A coarse-graining approach for molecular simulation that retains the dynamics of the all-atom reference system by implementing hydrodynamic interactions. , 2014, The Journal of chemical physics.

[33]  P. V. Coveney,et al.  Performance of distributed multiscale simulations , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[34]  F. Taheri,et al.  The effect of strain-rate on the tensile and compressive behavior of graphene reinforced epoxy/nanocomposites , 2014 .

[35]  Clare McCabe,et al.  Derivation of coarse-grained potentials via multistate iterative Boltzmann inversion. , 2014, The Journal of chemical physics.

[36]  Helgi I Ingólfsson,et al.  The power of coarse graining in biomolecular simulations , 2013, Wiley interdisciplinary reviews. Computational molecular science.

[37]  V. Harmandaris,et al.  Hierarchical simulations of hybrid polymer-solid materials , 2013 .

[38]  Ying Li,et al.  Challenges in Multiscale Modeling of Polymer Dynamics , 2013 .

[39]  R. Berry,et al.  Simulation of Fracture Nucleation in Cross-Linked Polymer Networks , 2013 .

[40]  Miquel Salmeron,et al.  Superlubric sliding of graphene nanoflakes on graphene. , 2013, ACS nano.

[41]  E. Vanden-Eijnden,et al.  The heterogeneous multiscale method* , 2012, Acta Numerica.

[42]  Q. Zheng,et al.  Interlayer binding energy of graphite: A mesoscopic determination from deformation , 2012 .

[43]  J. Segurado,et al.  Multiscale Modeling of Composite Materials: a Roadmap Towards Virtual Testing , 2011, Advanced materials.

[44]  Stéphane Roux,et al.  On the Identification and Validation of an Anisotropic Damage Model Using Full-field Measurements , 2011 .

[45]  Peter V. Coveney,et al.  Rule based design of clay-swelling inhibitors , 2011 .

[46]  F. Müller-Plathe,et al.  A Simple Reverse Mapping Procedure for Coarse-Grained Polymer Models with Rigid Side Groups , 2011 .

[47]  Lee Luong,et al.  Epoxy/graphene platelets nanocomposites with two levels of interface strength , 2011 .

[48]  A. Kinloch,et al.  The mechanisms and mechanics of the toughening of epoxy polymers modified with silica nanoparticles , 2010 .

[49]  M. Strano,et al.  Understanding the stabilization of liquid-phase-exfoliated graphene in polar solvents: molecular dynamics simulations and kinetic theory of colloid aggregation. , 2010, Journal of the American Chemical Society.

[50]  P. Coveney,et al.  Clay minerals mediate folding and regioselective interactions of RNA: a large-scale atomistic simulation study. , 2010, Journal of the American Chemical Society.

[51]  Yong-Wei Zhang,et al.  Spontaneous curling of graphene sheets with reconstructed edges. , 2010, ACS nano.

[52]  C. Macosko,et al.  Graphene/Polymer Nanocomposites , 2010 .

[53]  Iwona M Jasiuk,et al.  Multiscale modeling of elastic properties of cortical bone , 2010 .

[54]  Ted Belytschko,et al.  Coarse‐graining of multiscale crack propagation , 2010 .

[55]  Kurt Kremer,et al.  Multiscale simulation of soft matter systems – from the atomistic to the coarse-grained level and back , 2009 .

[56]  Mark F. Horstemeyer,et al.  Review of Hierarchical Multiscale Modeling to Describe the Mechanical Behavior of Amorphous Polymers , 2009 .

[57]  Ellad B. Tadmor,et al.  A unified framework and performance benchmark of fourteen multiscale atomistic/continuum coupling methods , 2009 .

[58]  F. F. Wu,et al.  Effect of sample size on ductility of metallic glass , 2009 .

[59]  Gregory A Voth,et al.  Reconstructing atomistic detail for coarse-grained models with resolution exchange. , 2008, The Journal of chemical physics.

[60]  H. C. Ottinger,et al.  Systematic time-scale-bridging molecular dynamics applied to flowing polymer melts. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  Florian Müller-Plathe,et al.  Transferability of coarse-grained force fields: the polymer case. , 2008, The Journal of chemical physics.

[62]  A. Yu,et al.  Multiscale modeling and simulation of polymer nanocomposites , 2008 .

[63]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[64]  Margaret E. Johnson,et al.  Representability problems for coarse-grained water potentials. , 2007, The Journal of chemical physics.

[65]  S. Stankovich,et al.  Graphene-based composite materials , 2006, Nature.

[66]  A. Yee,et al.  Epoxy Nanocomposites with Highly Exfoliated Clay: Mechanical Properties and Fracture Mechanisms , 2005 .

[67]  Tarek I. Zohdi,et al.  Homogenization Methods and Multiscale Modeling , 2004 .

[68]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[69]  Harold S. Park,et al.  An introduction and tutorial on multiple-scale analysis in solids , 2004 .

[70]  M. Shiga,et al.  Rapid estimation of elastic constants by molecular dynamics simulation under constant stress , 2004 .

[71]  Matthias W. Seeger,et al.  Gaussian Processes For Machine Learning , 2004, Int. J. Neural Syst..

[72]  Suprakas Sinha Ray,et al.  POLYMER/LAYERED SILICATE NANOCOMPOSITES: A REVIEW FROM PREPARATION TO PROCESSING , 2003 .

[73]  Gregory J. Wagner,et al.  Coupling of atomistic and continuum simulations using a bridging scale decomposition , 2003 .

[74]  T. Hertel,et al.  Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons , 2003, cond-mat/0308451.

[75]  E Weinan,et al.  Heterogeneous multiscale method: A general methodology for multiscale modeling , 2003 .

[76]  J. Chaboche,et al.  FE2 multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials , 2000 .

[77]  H. Sun,et al.  COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds , 1998 .

[78]  Steven G. Louie,et al.  MICROSCOPIC DETERMINATION OF THE INTERLAYER BINDING ENERGY IN GRAPHITE , 1998 .

[79]  G. B. Olson,et al.  Computational Design of Hierarchically Structured Materials , 1997 .

[80]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[81]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[82]  Georges Cailletaud,et al.  Integration methods for complex plastic constitutive equations , 1996 .

[83]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[84]  M. Ortiz,et al.  Quasicontinuum analysis of defects in solids , 1996 .

[85]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[86]  James F. Lutsko,et al.  Stress and elastic constants in anisotropic solids: Molecular dynamics techniques , 1988 .

[87]  Michael F. Ashby,et al.  Technology of the 1990s: advanced materials and predictive design , 1987, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[88]  M. Parrinello,et al.  Strain fluctuations and elastic constants , 1982 .

[89]  R. Young,et al.  The mechanical properties of epoxy resins , 1980 .

[90]  C. Macosko,et al.  Epoxy Toughening with Low Graphene Loading , 2015 .

[91]  M. Ulz,et al.  Coupling the finite element method and molecular dynamics in the framework of the heterogeneous multiscale method for quasi-static isothermal problems , 2015 .

[92]  Cosmin Safta,et al.  Uncertainty Quantification Toolkit (UQTk) , 2015 .

[93]  Mateo Valero,et al.  ALYA: MULTIPHYSICS ENGINEERING SIMULATION TOWARDS EXASCALE , 2014 .

[94]  T. Grande,et al.  Van der Waals density functional study of the energetics of alkali metal intercalation in graphite , 2014 .

[95]  Dimitrios Kolymbas,et al.  The misery of constitutive modelling , 2000 .

[96]  Y. Mai,et al.  Failure mechanisms in toughened epoxy resins—A review , 1988 .

[97]  Charbel Farhat,et al.  A simple and efficient automatic fem domain decomposer , 1988 .

[98]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .

[99]  J. Larson,et al.  International Journal of High Performance Computing Applications the Model Coupling Toolkit: a New Fortran90 Toolkit for Building Multiphysics Parallel Coupled Models 277 Model Coupling Toolkit the Model Coupling Toolkit: a New Fortran90 Toolkit for Building Multiphysics Parallel Coupled Models , 2022 .