Optical trapping of carbon nanotubes
暂无分享,去创建一个
Philip H. Jones | Francesco Bonaccorso | Aleksey Rozhin | Pietro G. Gucciardi | Rosalba Saija | Onofrio M. Maragò | Andrea Ferrari | Maria Antonia Iatì | Ferdinando Borghese | A. Ferrari | V. Scardaci | P. Denti | R. Saija | M. Iatì | O. Maragò | F. Borghese | F. Bonaccorso | G. Calogero | A. Rozhin | P. Gucciardi | Paolo Denti | Giuseppe Calogero | V. Scardaci | P. Jones | A. Ferrari
[1] W. Milne,et al. Photoluminescence spectroscopy of carbon nanotube bundles: evidence for exciton energy transfer. , 2007, Physical review letters.
[2] Rosalba Saija,et al. Optical trapping of nonspherical particles in the T-matrix formalism , 2007 .
[3] W. Milne,et al. Stabilization and Debundling of single-wall carbon nanotube dispersions in N-methyl-2-pyrrolidone (NMP) by polyvinylpyrrolidone (PVP) , 2007 .
[4] Philip H Jones,et al. Parametrization of trapping forces on microbubbles in scanning optical tweezers , 2007 .
[5] E. Sevick,et al. An optical trap experiment to demonstrate fluctuation theorems in viscoelastic media , 2007 .
[6] W. Milne,et al. Carbon nanotube–polymer composites for photonic devices , 2007 .
[7] J. Coleman,et al. Debundling of single-walled nanotubes by dilution: observation of large populations of individual nanotubes in amide solvent dispersions. , 2006, The journal of physical chemistry. B.
[8] B. Hecht,et al. Principles of nano-optics , 2006 .
[9] Xiu-Dong Sun,et al. Multidimensional manipulation of carbon nanotube bundles with optical tweezers , 2006 .
[10] E. Florin,et al. Direct observation of nondiffusive motion of a Brownian particle. , 2005, Physical review letters.
[11] Alexander Rohrbach,et al. Stiffness of optical traps: quantitative agreement between experiment and electromagnetic theory. , 2005, Physical review letters.
[12] Shida Tan,et al. Optical Trapping of Single-Walled Carbon Nanotubes , 2004 .
[13] Daniel M. Mueth,et al. Processing carbon nanotubes with holographic optical tweezers. , 2004, Optics express.
[14] V. C. Moore,et al. Individually suspended single-walled carbon nanotubes in various surfactants , 2003 .
[15] P. Denti,et al. Efficient light-scattering calculations for aggregates of large spheres. , 2003, Applied optics.
[16] M. Zheng,et al. DNA-assisted dispersion and separation of carbon nanotubes , 2003, Nature materials.
[17] Rosalba Saija,et al. Scattering from Model Nonspherical Particles: Theory and Applications to Environmental Physics , 2003 .
[18] V. C. Moore,et al. Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes , 2002, Science.
[19] Miles J. Padgett,et al. Lights, action: Optical tweezers , 2002 .
[20] P. Denti,et al. Beyond Mie Theory: The Transition Matrix Approach in Interstellar Dust Modeling , 2001 .
[21] Rodney S. Ruoff,et al. Organic solvent dispersions of single-walled carbon nanotubes: Toward solutions of pristine nanotubes , 2000 .
[22] Phaedon Avouris,et al. Deformation of carbon nanotubes by surface van der Waals forces , 1998 .
[23] C. Schmidt,et al. Interference model for back-focal-plane displacement detection in optical tweezers. , 1998, Optics letters.
[24] W. K. Maser,et al. Large-scale production of single-walled carbon nanotubes by the electric-arc technique , 1997, Nature.
[25] A. Ashkin,et al. Optical trapping and manipulation of neutral particles using lasers. , 1997, Proceedings of the National Academy of Sciences of the United States of America.
[26] Young Hee Lee,et al. Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.
[27] K. Svoboda,et al. Biological applications of optical forces. , 1994, Annual review of biophysics and biomolecular structure.
[28] S. Chu,et al. Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.
[29] Arthur Ashkin,et al. Optical Levitation by Radiation Pressure , 1971 .
[30] L. Mohan. SUM RULES FOR CP-NONCONSERVING BB$pi$ AMPLITUDES IN GLASHOW'S MODEL. , 1971 .
[31] P. Waterman,et al. SYMMETRY, UNITARITY, AND GEOMETRY IN ELECTROMAGNETIC SCATTERING. , 1971 .
[32] A. Ashkin. Acceleration and trapping of particles by radiation pressure , 1970 .
[33] D. A. Dunnett. Classical Electrodynamics , 2020, Nature.