Nanobubble collapse on a silica surface in water: billion-atom reactive molecular dynamics simulations.

Cavitation bubbles occur in fluids subjected to rapid changes in pressure. We use billion-atom reactive molecular dynamics simulations on a 163,840-processor BlueGene/P supercomputer to investigate damage caused by shock-induced collapse of nanobubbles in water near an amorphous silica surface. Collapse of an empty bubble generates a high-speed nanojet, which causes pitting on the silica surface. We find pit radii are close to bubble radii, and experiments also indicate linear scaling between them. The gas-filled bubbles undergo partial collapse and, consequently, the damage on the silica surface is mitigated.

[1]  Chung-Yuan Mou,et al.  Density hysteresis of heavy water confined in a nanoporous silica matrix , 2011, Proceedings of the National Academy of Sciences.

[2]  Kester Nahen,et al.  Dynamics of laser-induced cavitation bubbles near an elastic boundary , 2001, Journal of Fluid Mechanics.

[3]  J. Field,et al.  A high‐speed photographic study of cavitation damage , 1995 .

[4]  A. Savranlar,et al.  206 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? , 2005 .

[5]  W. Hentschel,et al.  Cavitation bubble dynamics studied by high speed photography and holography: part one , 1985 .

[6]  Lattice Boltzmann Simulation of Reactive Microflows over Catalytic Surfaces , 2002 .

[7]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[8]  Andrew G. Glen,et al.  APPL , 2001 .

[9]  J. Hunn,et al.  Summary of cavitation erosion investigations for the SNS mercury target , 2005 .

[10]  H. Möhwald,et al.  Acoustic Cavitation at the Water−Glass Interface , 2010 .

[11]  C. Ohl,et al.  Shock-wave-induced jetting of micron-size bubbles. , 2003, Physical review letters.

[12]  W. Lauterborn,et al.  Molecular dynamics simulations of cavitation bubble collapse and sonoluminescence , 2012 .

[13]  S. Kim,et al.  Study on the cavitation erosion behavior of hardfacing alloys for nuclear power industry , 2003 .

[14]  Tetsuya Kodama,et al.  Cavitation bubble behavior and bubble–shock wave interaction near a gelatin surface as a study of in vivo bubble dynamics , 2000 .

[15]  T. Naoe,et al.  Suppression of cavitation inception by gas bubble injection: a numerical study focusing on bubble-bubble interaction. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  W. Eisenmenger,et al.  Extracorporeal shock waves act by shock wave-gas bubble interaction. , 1998, Ultrasound in medicine & biology.

[17]  K. Takayama,et al.  Dynamic behavior of bubbles during extracorporeal shock-wave lithotripsy. , 1998, Ultrasound in medicine & biology.

[18]  R. Bonazza,et al.  Shock-Bubble Interactions , 2011 .

[19]  M. Hadfield,et al.  Cavitation erosion in silicon nitride: Experimental investigations on the mechanism of material degradation , 2010 .

[20]  W. Lauterborn,et al.  Cavitation erosion by single laser-produced bubbles , 1998, Journal of Fluid Mechanics.

[21]  A. V. van Duin,et al.  Structure and dynamics of shock-induced nanobubble collapse in water. , 2010, Physical review letters.

[22]  A. V. van Duin,et al.  Shock waves in high-energy materials: the initial chemical events in nitramine RDX. , 2003, Physical review letters.

[23]  A. Nakano,et al.  Poration of lipid bilayers by shock-induced nanobubble collapse , 2011 .

[24]  H. Möhwald,et al.  Nanoengineered metal surface capsules: construction of a metal-protection system. , 2012, Small.

[25]  R. Arndt Cavitation in Fluid Machinery and Hydraulic Structures , 1981 .

[26]  Werner Lauterborn,et al.  Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary , 1989, Journal of Fluid Mechanics.

[27]  Roberto Car,et al.  Why are water-hydrophobic interfaces charged? , 2008, Journal of the American Chemical Society.

[28]  M C Chu,et al.  Role of gas density in the stability of single-bubble sonoluminescence. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Water penetration of damaged self-assembled monolayers. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[30]  A. P. Rybakov Phase transformation of water under shock compression , 1996 .

[31]  Eric Johnsen,et al.  Numerical simulations of non-spherical bubble collapse , 2009, Journal of Fluid Mechanics.