Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier-Stokes equations in $\mathbb {R}^3$

[1]  J. Serrin On the interior regularity of weak solutions of the Navier-Stokes equations , 1962 .

[2]  Hiroshi Fujita,et al.  On the nonstationary Navier-Stokes system , 1962 .

[3]  Hiroshi Fujita,et al.  On the Navier-Stokes initial value problem. I , 1964 .

[4]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[5]  Jöran Bergh,et al.  General Properties of Interpolation Spaces , 1976 .

[6]  J. Peetre New thoughts on Besov spaces , 1976 .

[7]  J. Bony,et al.  Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires , 1980 .

[8]  H. Triebel Theory Of Function Spaces , 1983 .

[9]  Takashi Kato,et al.  StrongLp-solutions of the Navier-Stokes equation inRm, with applications to weak solutions , 1984 .

[10]  Yoshikazu Giga,et al.  Solutions in Lr of the Navier-Stokes initial value problem , 1985 .

[11]  H. Beirao da Veiga,et al.  Existence and Asymptotic Behavior for Strong Solutions of Navier-Stokes Equations in the Whole Space , 1985 .

[12]  Tetsuro Miyakawa,et al.  OnL2 decay of weak solutions of the Navier-Stokes equations inRn , 1986 .

[13]  Yoshikazu Giga,et al.  Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system , 1986 .

[14]  J. Chemin Remarks on global existence for the incompressible Navier-Stokes system , 1992 .

[15]  Michael E. Taylor,et al.  Analysis on Morrey Spaces and Applications to Navier-Stokes and Other Evolution Equations , 1992 .