BayesPy: Variational Bayesian Inference in Python

BayesPy is an open-source Python software package for performing variational Bayesian inference. It is based on the variational message passing framework and supports conjugate exponential family models. By removing the tedious task of implementing the variational Bayesian update equations, the user can construct models faster and in a less error-prone way. Simple syntax, flexible model construction and efficient inference make BayesPy suitable for both average and expert Bayesian users. It also supports some advanced methods such as stochastic and collapsed variational inference.

[1]  Yuan Qi,et al.  Parameter Expanded Variational Bayesian Methods , 2006, NIPS.

[2]  Jaakko Luttinen,et al.  Fast Variational Bayesian Linear State-Space Model , 2013, ECML/PKDD.

[3]  David J. Spiegelhalter,et al.  VIBES: A Variational Inference Engine for Bayesian Networks , 2002, NIPS.

[4]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[5]  Charles M. Bishop,et al.  Variational Message Passing , 2005, J. Mach. Learn. Res..

[6]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[7]  Juha Karhunen,et al.  Accelerating Cyclic Update Algorithms for Parameter Estimation by Pattern Searches , 2003, Neural Processing Letters.

[8]  Juha Karhunen,et al.  Approximate Riemannian Conjugate Gradient Learning for Fixed-Form Variational Bayes , 2010, J. Mach. Learn. Res..

[9]  David Huard,et al.  PyMC: Bayesian Stochastic Modelling in Python. , 2010, Journal of statistical software.

[10]  Juha Karhunen,et al.  Building Blocks for Variational Bayesian Learning of Latent Variable Models , 2007, J. Mach. Learn. Res..

[11]  Chong Wang,et al.  Stochastic variational inference , 2012, J. Mach. Learn. Res..

[12]  Neil D. Lawrence,et al.  Fast Variational Inference in the Conjugate Exponential Family , 2012, NIPS.

[13]  Tapani Raiko,et al.  Linear State-Space Model with Time-Varying Dynamics , 2014, ECML/PKDD.

[14]  K. Katahira,et al.  Deterministic annealing variant of variational Bayes method , 2008 .

[15]  Bill Bradley,et al.  Accelerating Inference: towards a full Language, Compiler and Hardware stack , 2012, ArXiv.