An Improved Bound on the Zero-Error List-Decoding Capacity of the 4/3 Channel

We prove a new upper bound on the size of codes <inline-formula> <tex-math notation="LaTeX">$C \subseteq \{1,2,3,4\}^{n}$ </tex-math></inline-formula> with the property that every four distinct codewords in <inline-formula> <tex-math notation="LaTeX">$C$ </tex-math></inline-formula> have a coordinate where they all differ. Specifically, we provide a self-contained proof that such codes have size at most <inline-formula> <tex-math notation="LaTeX">$2^{6n/19 + o(n)}$ </tex-math></inline-formula>, that is, rate bounded asymptotically by 6/19 ≤ 0.3158 (measured in bits). This improves the previous best upper bound of 0.3512 due to (Arikan 1994), which in turn improved the 0.375 bound that followed from general bounds for perfect hashing due to (Fredman and Komlós, 1984) and (Körner and Marton, 1988). Finally, using a combination of our approach with a simple idea which exploits powerful bounds on the minimum distance of codes in the Hamming space, we further improve the upper bound to 0.31477.

[1]  J. Körner Fredman-Kolmo´s bounds and information theory , 1986 .

[2]  Peter Elias,et al.  Zero error capacity under list decoding , 1988, IEEE Trans. Inf. Theory.

[3]  E. Szemerédi,et al.  On a problem of graph theory , 1967 .

[4]  Ernie Croot,et al.  Progression-free sets in Z_4^n are exponentially small , 2017 .

[5]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[6]  J. Komlos,et al.  On the Size of Separating Systems and Families of Perfect Hash Functions , 1984 .

[7]  R. E. Krichevskii,et al.  Complexity of Contact Circuits Realizing a Function of Logical Algebra , 1964 .

[8]  A. Nilli Perfect Hashing and Probability , 1994, Combinatorics, Probability and Computing.

[9]  Jordan S. Ellenberg,et al.  On large subsets of $F_q^n$ with no three-term arithmetic progression , 2016 .

[10]  Claude E. Shannon,et al.  The zero error capacity of a noisy channel , 1956, IRE Trans. Inf. Theory.

[11]  Venkatesan Guruswami,et al.  Beating Fredman-Komlós for perfect k-hashing , 2019, Electron. Colloquium Comput. Complex..

[12]  Erdal Arikan,et al.  An upper bound on the zero-error list-coding capacity , 1994, IEEE Trans. Inf. Theory.

[13]  Nicholas Pippenger An Information-Theoretic Method in Combinatorial Theory , 1977, J. Comb. Theory, Ser. A.

[14]  János Körner,et al.  New Bounds for Perfect Hashing via Information Theory , 1988, Eur. J. Comb..

[15]  W. Sawin,et al.  UPPER BOUNDS FOR SUNFLOWER-FREE SETS , 2016, Forum of Mathematics, Sigma.