Label-free intracellular transport measured by spatial light interference microscopy.

We show that applying the Laplace operator to a speckle-free quantitative phase image reveals an unprecedented level of detail in cell structure, without the gradient artifacts associated with differential interference contrast microscopy, or photobleaching and phototoxicity limitations common in fluorescence microscopy. This method, referred to as Laplace phase microscopy, is an efficient tool for tracking vesicles and organelles in living cells. The principle is demonstrated by tracking organelles in cardiomyocytes and vesicles in neurites of hippocampal neurons, which to our knowledge are the first label-free diffusion measurements of the organelles in such cells.

[1]  Nir S. Gov,et al.  Metabolic remodeling of the human red blood cell membrane , 2010, Proceedings of the National Academy of Sciences.

[2]  B. Alberts,et al.  An Introduction to the Molecular Biology of the Cell , 1998 .

[3]  K. Nugent,et al.  Quantitative optical phase microscopy. , 1998, Optics letters.

[4]  Christian Depeursinge,et al.  Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy. , 2009, Journal of biomedical optics.

[5]  Joseph A Izatt,et al.  Spectral-domain phase microscopy. , 2004, Optics letters.

[6]  Suliana Manley,et al.  Optical measurement of cell membrane tension. , 2006, Physical review letters.

[7]  R. Barer Interference Microscopy and Mass Determination , 1952, Nature.

[8]  Yishi Jin,et al.  Roles of endosomal trafficking in neurite outgrowth and guidance. , 2009, Trends in cell biology.

[9]  N. Blackstone Essential Cell Biology: An Introduction to the Molecular Biology of the Cell.Bruce Alberts , Dennis Bray , Alexander Johnson , Julian Lewis , Martin Raff , Keith Roberts , Peter Walter , 1998 .

[10]  Francisco Ortega,et al.  Microrheology of Complex Fluids , 2011 .

[11]  R. Nuzzo,et al.  Microfluidic devices for culturing primary mammalian neurons at low densities. , 2007, Lab on a chip.

[12]  Zhuo Wang,et al.  Jones phase microscopy of transparent and anisotropic samples. , 2008, Optics letters.

[13]  R. Dasari,et al.  Diffraction phase microscopy for quantifying cell structure and dynamics. , 2006, Optics letters.

[14]  Yongkeun Park,et al.  Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum , 2008, Proceedings of the National Academy of Sciences.

[15]  Natan T Shaked,et al.  Reflective interferometric chamber for quantitative phase imaging of biological sample dynamics. , 2010, Journal of biomedical optics.

[16]  Zhuo Wang,et al.  Fourier transform light scattering of inhomogeneous and dynamic structures. , 2008, Physical review letters.

[17]  K. Nugent,et al.  Noninterferometric phase imaging with partially coherent light , 1998 .

[18]  F. Zernike How I discovered phase contrast. , 1955, Science.

[19]  K. Nugent,et al.  Quantitative phase‐amplitude microscopy I: optical microscopy , 2002, Journal of microscopy.

[20]  K. Badizadegan,et al.  Live cell refractometry using microfluidic devices. , 2006, Optics letters.

[21]  C. Ibáñez Message in a bottle: long-range retrograde signaling in the nervous system. , 2007, Trends in cell biology.

[22]  E. Cuche,et al.  Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy. , 2005, Optics letters.

[23]  Gabriel Popescu,et al.  Fresnel particle tracing in three dimensions using diffraction phase microscopy. , 2007, Optics letters.

[24]  Bing Zhao,et al.  Quantitative phase measurements using optical quadrature microscopy. , 2008, Applied optics.

[25]  Zahid Yaqoob,et al.  Full field phase imaging using a harmonically matched diffraction grating pair based homodyne quadrature interferometer , 2007 .

[26]  J. Sotelo,et al.  RNA Trafficking in Axons , 2006, Traffic.

[27]  H. G. Davies,et al.  Interference Microscopy and Mass Determination , 1952, Nature.

[28]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[29]  J. Pawley,et al.  Handbook of Biological Confocal Microscopy , 1990, Springer US.

[30]  Gabriel Popescu,et al.  Fourier phase microscopy for investigation of biological structures and dynamics. , 2004, Optics letters.

[31]  G. Popescu Quantitative phase imaging of nanoscale cell structure and dynamics. , 2008, Methods in cell biology.

[32]  D A Weitz,et al.  Investigating the microenvironments of inhomogeneous soft materials with multiple particle tracking. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Patrik Langehanenberg,et al.  Automated three-dimensional tracking of living cells by digital holographic microscopy. , 2009, Journal of biomedical optics.

[34]  Gabriel Popescu,et al.  Hilbert phase microscopy for investigating fast dynamics in transparent systems. , 2005, Optics letters.

[35]  Gabriel Popescu,et al.  Optical imaging of cell mass and growth dynamics. , 2008, American journal of physiology. Cell physiology.

[36]  Denis Wirtz,et al.  Particle-tracking microrheology of living cells: principles and applications. , 2009, Annual review of biophysics.

[37]  D. Gabor A New Microscopic Principle , 1948, Nature.

[38]  A. Maass,et al.  Cardiomyocyte preparation, culture, and gene transfer. , 2007, Methods in molecular biology.

[39]  Joseph Katz,et al.  Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates , 2007, Proceedings of the National Academy of Sciences.

[40]  J. Rogers,et al.  Spatial light interference microscopy (SLIM) , 2010, IEEE Photonic Society 24th Annual Meeting.

[41]  G. Rokosh,et al.  Cardiac Gene Expression , 2007, Methods in Molecular Biology.

[42]  Stefan W. Hell,et al.  Supporting Online Material Materials and Methods Figs. S1 to S9 Tables S1 and S2 References Video-rate Far-field Optical Nanoscopy Dissects Synaptic Vesicle Movement , 2022 .

[43]  Taner Akkin,et al.  Spectral-domain optical coherence phase microscopy for quantitative phase-contrast imaging. , 2005, Optics letters.

[44]  Frederick E. Petry,et al.  Principles and Applications , 1997 .

[45]  Graham Dunn,et al.  An image processing system for cell behaviour studies in subconfluent cultures , 1995 .

[46]  K. Nugent,et al.  Refractive index measurement in viable cells using quantitative phase‐amplitude microscopy and confocal microscopy , 2005, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[47]  Xinnan Wang,et al.  Axonal transport and the delivery of pre-synaptic components , 2008, Current Opinion in Neurobiology.

[48]  H. L. Dryden,et al.  Investigations on the Theory of the Brownian Movement , 1957 .

[49]  Gabriel Popescu,et al.  Measurement of red blood cell mechanics during morphological changes , 2010, Proceedings of the National Academy of Sciences.

[50]  Zhuo Wang,et al.  Tissue refractive index as marker of disease. , 2011, Journal of biomedical optics.