A randomized parallel 3D convex hull algorithm for coarse grained multicomputers

We present a randomized parallel algorithm for constructing the 3D convex hull on a generic p-processor coarse grained multicomputer with arbitrary interconnection network and n/p local memory per processor, where ~ z p’+’ (for some arbitrarily small c > O). For any given set of n points in 3-space, the algorithm computes the 3D convex hull, with high probability, in 0(w) local computation time and 0(1 ) communication phases with at most 0(~) data sent/received by each processor. That is, with high probability, the algorithm computes the 3D convex hull of an arbitrary point set in time 0(* + I’~,P), where I’~,P denotes the time complexity of one communication phase. In the terminology of the BSP model, our algorithm requires, with high probability, O(1) supersteps and a synchronization period @(%). In the LogP model, the execution time of our algorithm is asymptotically optimaJ for several archit ect ures. ● This work was partially supported by the Natural Sciences and Engineering Research Council of Canada and the ESPRIT Basic Research Actions Nr. 7141 (ALCOM II). tschool of Computer Science, Carleton Univer.9ity, Ottawa, Canada KIS 5B6. Email: dehne@scs. carlet on. ca ~J@t. of Computer Science, York University, NOrth York, Canada M3J 1P3. Email: {deng, dyrnond}@cs .yorku. ca 5 Dept. of Computer Science, Utrecht University, 3508 TB Utrecht, The Netherlands. Email: andreas@cs .ruu. nl II School Of EE and Dept. of Computer Sci., Purdue University, West Lafayette, IN 47907, USA. Email: ashf aq~cs .purdue. edu Permission to make. digitirl/llarci copies of :111or p:~rt of [his nl:llcri:ll wiLhout fee is granted provided lhat the ct]pics ;Ire II(J1 m:ldc {Jr dis~l-il,~itcd for profit or commercial advantage, the ACM copyrighl/sccvcr notice, the title of the publication and its date appear, and notice is given that copyright is by permission of the Association for Computin: Machinery, Inc. (ACM). To copy otherwise, to repuhlish,[o post on servers or LO redistribute to lists, requires specific permission and/cor ftx, SPAA’95 Santa Bmlxm CA USA(”) 1995 ACM O-89791 -717-0/9.5/07.S3.50

[1]  Xiaotie Deng A Convex Hull Algorithm on Coarse-Grained Multiprocessors , 1994, ISAAC.

[2]  Alok Aggarwal,et al.  On communication latency in PRAM computations , 1989, SPAA '89.

[3]  R. Tarjan,et al.  A Separator Theorem for Planar Graphs , 1977 .

[4]  F. Leighton,et al.  Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .

[5]  Phillip B. Gibbons A more practical PRAM model , 1989, SPAA '89.

[6]  Jyh-Jong Tsay,et al.  External-memory computational geometry , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[7]  Kenneth C. SevcikComputer Parallel Sorting by Overpartitioning , 1994 .

[8]  Noga Alon,et al.  Parallel linear programming in fixed dimension almost surely in constant time , 1990, Proceedings [1990] 31st Annual Symposium on Foundations of Computer Science.

[9]  Leslie G. Valiant,et al.  General Purpose Parallel Architectures , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[10]  Xiaotie Deng,et al.  Efficient routing and message bounds for optimal parallel algorithms , 1995, Proceedings of 9th International Parallel Processing Symposium.

[11]  Susanne E. Hambrusch,et al.  C/sup 3/: an architecture-independent model for coarse-grained parallel machines , 1994, Proceedings of 1994 6th IEEE Symposium on Parallel and Distributed Processing.

[12]  Kevin Q. Brown,et al.  Voronoi Diagrams from Convex Hulls , 1979, Inf. Process. Lett..

[13]  Leslie G. Valiant,et al.  A bridging model for parallel computation , 1990, CACM.

[14]  Kurt Mehlhorn,et al.  Four Results on Randomized Incremental Constructions , 1992, Comput. Geom..

[15]  Leonidas J. Guibas,et al.  Parallel computational geometry , 1988, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[16]  Mikhail J. Atallah,et al.  Efficient Parallel Solutions to Some Geometric Problems , 1986, J. Parallel Distributed Comput..

[17]  Frank Thomson Leighton Introduction to parallel algorithms and architectures: arrays , 1992 .

[18]  Michael T. Goodrich,et al.  Planar Separators and Parallel Polygon Triangulation , 1995, J. Comput. Syst. Sci..

[19]  Andrew Rau-Chaplin,et al.  Scalable parallel geometric algorithms for coarse grained multicomputers , 1993, SCG '93.

[20]  Guy E. Blelloch,et al.  A comparison of sorting algorithms for the connection machine CM-2 , 1991, SPAA '91.

[21]  Nancy M. Amato,et al.  Parallel algorithms for higher-dimensional convex hulls , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[22]  John H. Reif,et al.  Erratum: Optimal Parallel Randomized Algorithms for Three-Dimensional Convex Hulls and Related Problems , 1994, SIAM J. Comput..

[23]  Claire Mathieu,et al.  Scalable and architecture independent parallel geometric algorithms with high probability optimal time , 1994, Proceedings of 1994 6th IEEE Symposium on Parallel and Distributed Processing.

[24]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[25]  Ramesh Subramonian,et al.  LogP: towards a realistic model of parallel computation , 1993, PPOPP '93.

[26]  Kenneth E. Batcher,et al.  Sorting networks and their applications , 1968, AFIPS Spring Joint Computing Conference.

[27]  Robert E. Tarjan,et al.  Applications of a planar separator theorem , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[28]  Lawrence Snyder,et al.  Type architectures, shared memory, and the corollary of modest potential , 1986 .

[29]  Anita Liu Chow Parallel algorithms for geometric problems , 1980 .

[30]  Ketan Mulmuley,et al.  Computational geometry - an introduction through randomized algorithms , 1993 .

[31]  Leslie G. Valiant,et al.  Direct Bulk-Synchronous Parallel Algorithms , 1992, J. Parallel Distributed Comput..

[32]  Hui Li,et al.  Parallel sorting by over partitioning , 1994, SPAA '94.

[33]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[34]  Richard J. Anderson,et al.  A comparison of shared and nonshared memory models of parallel computation , 1991 .

[35]  Uzi Vishkin,et al.  An O(log n) Parallel Connectivity Algorithm , 1982, J. Algorithms.

[36]  Mikhail J. Atallah,et al.  On the parallel decomposability of geometric problems , 1989, SCG '89.

[37]  Russ Miller,et al.  Efficient Parallel Convex Hull Algorithms , 1988, IEEE Trans. Computers.

[38]  Nancy M. Amato,et al.  An NC parallel 3D convex hull algorithm , 1993, SCG '93.

[39]  Mihalis Yannakakis,et al.  Towards an architecture-independent analysis of parallel algorithms , 1990, STOC '88.

[40]  David G. Kirkpatrick,et al.  Fast Detection of Polyhedral Intersection , 1983, Theor. Comput. Sci..

[41]  Uri Zwick,et al.  An optimal randomized logarithmic time connectivity algorithm for the EREW PRAM (extended abstract) , 1994, SPAA '94.

[42]  Kurt Mehlhorn,et al.  Graph Algorithm and NP-Completeness , 1984 .

[43]  Uri Zwick,et al.  An Optimal Randomised Logarithmic Time Connectivity Algorithm for the EREW PRAM , 1996, J. Comput. Syst. Sci..