On Concomitants of Order Statistics from Morgenstern Family

In the present paper the distribution theory of concomitants of order statistics from the Morgenstern family of distribution is investigated. An application of the results in providing some quick estimates of the parameters in the Gumbel's bivariate exponential distribution is also discussed.

[1]  Haikady N. Nagaraja,et al.  18 Concomitants of order statistics , 1998, Order statistics.

[2]  S. Stokes,et al.  Estimation of Variance Using Judgment Ordered Ranked Set Samples , 1980 .

[3]  P. K. Bhattacharya Convergence of Sample Paths of Normalized Sums of Induced Order Statistics , 1974 .

[4]  Frank E. Harrell,et al.  Statistical inference for censored bivariate normal distributions based on induced order statistics , 1979 .

[5]  S. Tsukibayashi Estimation of bivariate parameters based on range. , 1962 .

[6]  Shomei Tsukibayashi The joint distribution and moments of an extreme of the dependent variable and the concomitant of an extreme of the independent varible , 1998 .

[7]  Narayanaswamy Balakrishnan,et al.  Order Statistics and Inference: Estimation Methods. , 1992 .

[8]  Shie-Shien Yang,et al.  General Distribution Theory of the Concomitants of Order Statistics , 1977 .

[9]  Narayanaswamy Balakrishnan,et al.  On a class of multivariate distributions closed under concomitance of order statistics , 1995 .

[10]  B. Arnold,et al.  A first course in order statistics , 1994 .

[11]  Nancy L. Spruill,et al.  On the Estimation of the Correlation Coefficient from Grouped Data , 1982 .

[12]  S. Gupta,et al.  Order Statistics from the Gamma Distribution , 1960 .

[13]  Alan L. Gross,et al.  Prediction in future samples studied in terms of the gain from selection , 1973 .

[14]  E. Gumbel Bivariate Exponential Distributions , 1960 .

[15]  B. K. Shah Note on Moments of a Logistic Order Statistics , 1970 .

[16]  E. Gumbel Bivariate Logistic Distributions , 1961 .

[17]  Janos Galambos,et al.  The asymptotic theory of concomitants of order statistics , 1974 .

[18]  H. A. David,et al.  Selection Through an Associated Characteristic, With Applications to the Random Effects Model , 1984 .

[19]  H. A. David,et al.  On the dependence structure of order statistics and concomitants of order statistics , 1990 .

[20]  Kanti V. Mardia,et al.  Families of Bivariate Distributions. , 1971 .

[21]  P. Sen,et al.  Order statistics and inference : estimation methods , 1992 .

[22]  Peter Hall,et al.  Distribution Estimation Using Concomitants of Order Statistics, with Application to Monte Carlo Simulation for the Bootstrap , 1992 .

[23]  P. R. Krishnaiah,et al.  Tables for the moments of gamma order statistics , 1967 .

[24]  Shie-Shien Yang,et al.  Linear Functions of Concomitants of Order Statistics with Application to Nonparametric Estimation of a Regression Function , 1981 .

[26]  W. R. Buckland,et al.  Distributions in Statistics: Continuous Multivariate Distributions , 1973 .

[27]  BIVARIATE PROBIT, LOGIT, AND BURRIT ANALYSIS , 1969 .

[28]  Enrique Castillo Extreme value theory in engineering , 1988 .

[29]  H. A. David,et al.  Distribution of the Maximum of Concomitants of Selected Order Statistics , 1994 .

[30]  S. Stokes,et al.  Ranked set sampling with concomitant variables , 1977 .

[31]  Shie-Shien Yang Linear Function of Concomitants of Order Statistics. , 1977 .

[32]  P. K. Bhattacharya 18 Induced order statistics: Theory and applications , 1984, Nonparametric Methods.

[33]  G. M. D'este,et al.  A Morgenstern-type bivariate gamma distribution , 1981 .

[34]  G. A. Watterson Linear Estimation in Censored Samples from Multivariate Normal Populations , 1959 .

[35]  Haikady N. Nagaraja Some asymptotic results for the induced selection differential , 1982 .

[36]  H. A. David Concomitants of Extreme Order Statistics , 1994 .

[37]  H. A. David,et al.  Distribution and Expected Value of the Rank of a Concomitant of an Order Statistic , 1977 .

[38]  B. Efron More Efficient Bootstrap Computations , 1990 .

[39]  Concomitants of Order Statistics from Gumbel's Bivariate Weibull Distribution , 1997 .

[40]  L. Kaiser,et al.  Unbiased Estimation in Line-Intercept Sampling , 1983 .

[41]  D. E. Barton,et al.  A QUICK ESTIMATE OF THE REGRESSION COEFFICIENT , 1958 .

[42]  Narayanaswamy Balakrishnan,et al.  Multivariate normal distribution and multivariate order statistics induced by ordering linear combinations , 1993 .

[43]  Hassen A. Muttlak,et al.  Ranked set sampling with respect to concomitant variables and with size biased probability of selection , 1990 .

[44]  S. Lynne Stokes,et al.  Inferences on the Correlation Coefficient in Bivariate Normal Populations from Ranked Set Samples , 1980 .

[45]  Samuel Kotz,et al.  New generalized Farlie-Gumbel-Morgenstern distributions and concomitants of order statistics , 2001 .

[46]  J. D. T. Oliveira,et al.  The Asymptotic Theory of Extreme Order Statistics , 1979 .

[47]  J. L. Clutter,et al.  Ranked Set Sampling Theory with Order Statistics Background , 1972 .