Convective heat transfer in the flow of viscous Ag–water and Cu–water nanofluids over a stretching surface

Abstract An analysis is carried out to study the convective heat transfer in a nanofluid flow over a stretching surface. In particular, we focus on Ag–water and Cu–water nanofluids, and investigate the effects of the nanoparticle volume fraction on the flow and heat transfer characteristics under the influence of thermal buoyancy and temperature dependent internal heat generation or absorption. The numerical results indicate that an increase in the nanoparticle volume fraction will decrease the velocity boundary layer thickness while increasing the thermal boundary layer thickness, even in the presence of free convection currents and internal heat generation. Meanwhile, the presence of nanoparticles results in an increase in the magnitude of the skin friction along the surface and a decrease in the magnitude of the local Nusselt number. Such effects are found to be more pronounced in the Ag–water solution than in the Cu–water solution; indeed, the Ag–water solution decreases the boundary layer thickness more than that of the Cu–water solution.

[1]  T. Chen,et al.  Buoyancy Effects in Boundary Layers on Inclined, Continuous, Moving Sheets , 1980 .

[2]  K. Vajravelu,et al.  Flow and heat transfer in a saturated porous medium over a stretching surface , 1994 .

[3]  Ioan Pop,et al.  Boundary-layer flow of nanofluids over a moving surface in a flowing fluid , 2010 .

[4]  Noor Afzal The cooling of a low-heat-resistance stretching sheet moving through a fluid: A rejoinder , 1980 .

[5]  C.-H. Chen,et al.  Laminar mixed convection adjacent to vertical, continuously stretching sheets , 1998 .

[6]  Saiied M. Aminossadati,et al.  Natural Convection Heat Transfer in an Inclined Enclosure Filled with a Water-Cuo Nanofluid , 2009 .

[7]  P. S. Datti,et al.  Hydromagnetic flow and heat transfer of a non-Newtonian power law fluid over a vertical stretching sheet , 2010 .

[8]  H. Masuda,et al.  ALTERATION OF THERMAL CONDUCTIVITY AND VISCOSITY OF LIQUID BY DISPERSING ULTRA-FINE PARTICLES. DISPERSION OF AL2O3, SIO2 AND TIO2 ULTRA-FINE PARTICLES , 1993 .

[9]  H. Keller Numerical Methods for Two-Point Boundary-Value Problems , 1993 .

[10]  Subhas Abel,et al.  Non-Newtonian flow past a stretching plate , 1985 .

[11]  W. Roetzel,et al.  TEMPERATURE DEPENDENCE OF THERMAL CONDUCTIVITY ENHANCEMENT FOR NANOFLUIDS , 2003 .

[12]  V. M. Soundalgekar,et al.  Heat transfer in flow past a continuous moving plate with variable temperature , 1980 .

[13]  H. Brinkman The Viscosity of Concentrated Suspensions and Solutions , 1952 .

[14]  K. Vajravelu,et al.  Convective heat transfer in an electrically conducting fluid at a stretching surface with uniform free stream , 1997 .

[15]  J. Maxwell A Treatise on Electricity and Magnetism , 1873, Nature.

[16]  Ioan Pop,et al.  Flow and heat transfer at a general three-dimensional stagnation point in a nanofluid , 2010 .

[17]  Mohammad Ferdows,et al.  FINITE DIFFERENCE SOLUTION OF MHD RADIATIVE BOUNDARY LAYER FLOW OF A NANOFLUID PAST A STRETCHING SHEET , 2010 .

[18]  Donald A. Nield,et al.  Natural convective boundary-layer flow of a nanofluid past a vertical plate , 2010 .

[19]  S. Kakaç,et al.  Review of convective heat transfer enhancement with nanofluids , 2009 .

[20]  Saiied M. Aminossadati,et al.  Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure , 2009 .

[21]  Cha'o-Kuang Chen,et al.  Heat transfer of a continuous, stretching surface with suction or blowing , 1988 .

[22]  C. T. Nguyen,et al.  New temperature dependent thermal conductivity data for water-based nanofluids , 2009 .

[23]  W. H. H. Banks,et al.  Similarity solutions of the boundary-layer equations for a stretching wall , 1983 .

[24]  M. Ali,et al.  Heat transfer characteristics of a continuous stretching surface , 1994 .

[25]  Ioan Pop,et al.  Magnetohydrodynamics stagnation point flow towards a stretching vertical sheet , 2006 .

[26]  M. Ali,et al.  Laminar mixed convection from a continuously moving vertical surface with suction or injection , 1998 .

[27]  P. S. Gupta,et al.  Heat and mass transfer on a stretching sheet with suction or blowing , 1977 .

[28]  L. J. Grubka,et al.  Heat Transfer Characteristics of a Continuous, Stretching Surface With Variable Temperature , 1985 .

[29]  Kumbakonam R. Rajagopal,et al.  Flow of a viscoelastic fluid over a stretching sheet , 1984 .

[30]  Noor Afzal,et al.  Abkühlungscharakteristik einer gut wärmeleitenden Platte, die bei der Bewegung durch ein Fluid gestreckt wird , 1980 .

[31]  M. Subhas Abel,et al.  Momentum and heat transfer in visco‐elastic fluid flow in a porous medium over a non‐isothermal stretching sheet , 2000 .

[32]  P. Bradshaw,et al.  Physical and Computational Aspects of Convective Heat Transfer , 1984 .

[33]  C. H. Chen Forced convection over a continuous sheet with suction or injection moving in a flowing fluid , 1999 .

[34]  H. Oztop,et al.  Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids , 2008 .

[35]  P. S. Datti,et al.  MHD power-law fluid flow and heat transfer over a non-isothermal stretching sheet , 2009 .

[36]  K. Vajravelu,et al.  Convection heat transfer at a stretching sheet with suction or blowing , 1994 .

[37]  Ioan Pop,et al.  Boundary layer flow and heat transfer over an unsteady stretching vertical surface , 2009 .

[38]  P. Veena,et al.  Visco-elastic fluid flow and heat transfer in a porous medium over a stretching sheet , 1998 .

[39]  Y. Xuan,et al.  Investigation on Convective Heat Transfer and Flow Features of Nanofluids , 2003 .

[40]  L. Crane Flow past a stretching plate , 1970 .

[41]  Abdul Aziz,et al.  MHD mixed convection from a vertical plate embedded in a porous medium with a convective boundary condition , 2010 .

[42]  F. Strobel,et al.  Buoyancy Effects in Boundary Layer Adjacent to a Continuous, Moving Horizontal Flat Plate , 1980 .

[43]  K. Khanafer,et al.  BUOYANCY-DRIVEN HEAT TRANSFER ENHANCEMENT IN A TWO-DIMENSIONAL ENCLOSURE UTILIZING NANOFLUIDS , 2003 .